The line \( Y - y = Y'(x)(X - x) \) represents the tangent to \( Y = Y(X) \) at \( (x, y) \).
The area \( A = -\frac{Y(x)^2}{2Y'(x)} + 1 \) relates \( y \) and \( Y'(x) \) on the curve.
Differentiate with respect to \( x \) and solve for \( Y(x) \) using the initial condition \( Y(1) = 1 \).
\[ 1 = \frac{2}{3} + c \]
\[ c = \frac{1}{3} \]
\[ Y = \frac{2}{3} \times \frac{1}{X} + \frac{1}{3}X^2 \]
\[ 12Y(2) = \frac{5}{3} \times 12 = 20 \]
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: