From the tangents, we find:
\[ f'(1) = \frac{1}{\sqrt{3}}, \quad f'(3) = 1. \]
Assume \( f'(t) = t \) (consistent with the slopes), then \( f''(t) = 1 \).
Substitute into the integral:
\[ 2 \int_{\frac{1}{\sqrt{3}}}^{1} \left( t^2 + 1 \right) dt = \alpha + \beta \sqrt{3}. \]
\[ \alpha + \beta \sqrt{3} = 27 \left( \frac{4}{3} - \frac{10}{27} \sqrt{3} \right) = 36 - 10\sqrt{3}. \]
Here \( \alpha = 36, \beta = -10 \).
\[ \alpha + \beta = 36 - 10 = 26 \]
Compute the integral to find \( \alpha + \beta = 26 \).
If \[ \int e^x (x^3 + x^2 - x + 4) \, dx = e^x f(x) + C, \] then \( f(1) \) is:
The value of : \( \int \frac{x + 1}{x(1 + xe^x)} dx \).
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32