\(\log_4{{\frac{2}{3}}} \)
Given differential equations are:
\[\frac{dx}{dt} + ax = 0 \Rightarrow x(t) = x(0)e^{-at}\]
\[\frac{dy}{dt} + by = 0 \Rightarrow y(t) = y(0)e^{-bt}\]
From the initial conditions, we are provided:
\( x(0) = 2, \; y(0) = 1 \)
Thus, the solutions for \( x(t) \) and \( y(t) \) become:
\( x(t) = 2e^{-at} \), \( y(t) = e^{-bt} \)
We are given:
\( 3y(1) = 2x(1) \)
Substituting the values of \( x(1) \) and \( y(1) \):
\( 3e^{-b} = 2 \times 2e^{-a} \Rightarrow 3e^{-b} = 4e^{-a} \)
Taking the natural logarithm on both sides:
\( -b = -a + \ln\left(\frac{4}{3}\right) \)
Rearranging terms, we get:
\( b = a + \ln\left(\frac{4}{3}\right) \)
We need to find the value of \( t \) such that:
\( 2e^{-at} = e^{-bt} \)
Dividing both sides by \( e^{-bt} \):
\( 2 = e^{(b-a)t} \)
Taking the natural logarithm of both sides:
\( \ln 2 = (b - a)t \)
Substituting the expression for \( b - a \) from earlier:
\( b - a = \ln\left(\frac{4}{3}\right) \)
Thus:\( t = \frac{\ln 2}{\ln \left(\frac{4}{3}\right)} \)
To simplify
\( \frac{\ln 2}{\ln \left(\frac{4}{3}\right)} \), we recognize that:
\[\log_4 \left(\frac{2}{3}\right) = \frac{\ln \left(\frac{2}{3}\right)}{\ln 4} = \frac{\ln 2}{\ln \left(\frac{4}{3}\right)}\]
Thus, the value of \( t \) is:\( t = \log_4 \left(\frac{2}{3}\right) \)
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: