For group A, we can select 3 boys and 2 girls, or 4 boys and 1 girl. The number of ways to select these members can be calculated using combinations:
\[ \text{Ways for group A} = \binom{7}{4} \times \binom{3}{1} + \binom{7}{3} \times \binom{3}{2}. \]
For group B, we can select the remaining individuals:
\[ \text{Ways for group B} = \binom{6}{1} \times \binom{5}{2} + \binom{6}{2} \times \binom{5}{1}. \]
Multiplying the total number of ways for both groups gives the final answer.
Final Answer: 8750.
Match List-I with List-II
List-I | List-II |
---|---|
(A) \(^{8}P_{3} - ^{10}C_{3}\) | (I) 6 |
(B) \(^{8}P_{5}\) | (II) 21 |
(C) \(^{n}P_{4} = 360,\) then find \(n\). | (III) 216 |
(D) \(^{n}C_{2} = 210,\) find \(n\). | (IV) 6720 |
Choose the correct answer from the options given below:
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: