The function \( f(x) = [x] + |x - 2| \) consists of two components:
1. The greatest integer function, \( [x] \), which has discontinuities at integer values of \( x \).
2. The absolute value function, \( |x - 2| \), which has a critical point at \( x = 2 \). Now, consider the interval \( -2<x<3 \).
The points where \( f(x) \) is not continuous or differentiable are determined by:
- Discontinuities in \( [x] \), which happen at \( x = -1, 0, 1, 2 \).
- A critical point in \( |x - 2| \) at \( x = 2 \). So, the points where \( f(x) \) is not continuous are \( x = -1, 0, 1, 2 \), which gives us \( m = 4 \) discontinuities. The points where \( f(x) \) is not differentiable are due to the change in the slope at these points. Specifically, the function is not differentiable at \( x = 2 \), so \( n = 1 \). Thus, \( m + n = 4 + 3 = 7 \).
Final Answer: \( m + n = 7 \).
The value of current \( I \) in the electrical circuit as given below, when the potential at \( A \) is equal to the potential at \( B \), will be _____ A.
Two light beams fall on a transparent material block at point 1 and 2 with angle \( \theta_1 \) and \( \theta_2 \), respectively, as shown in the figure. After refraction, the beams intersect at point 3 which is exactly on the interface at the other end of the block. Given: the distance between 1 and 2, \( d = \frac{4}{3} \) cm and \( \theta_1 = \theta_2 = \cos^{-1} \left( \frac{n_2}{2n_1} \right) \), where \( n_2 \) is the refractive index of the block and \( n_1 \) is the refractive index of the outside medium, then the thickness of the block is …….. cm.