The function \( f(x) = [x] + |x - 2| \) consists of two components:
1. The greatest integer function, \( [x] \), which has discontinuities at integer values of \( x \).
2. The absolute value function, \( |x - 2| \), which has a critical point at \( x = 2 \). Now, consider the interval \( -2<x<3 \).
The points where \( f(x) \) is not continuous or differentiable are determined by:
- Discontinuities in \( [x] \), which happen at \( x = -1, 0, 1, 2 \).
- A critical point in \( |x - 2| \) at \( x = 2 \). So, the points where \( f(x) \) is not continuous are \( x = -1, 0, 1, 2 \), which gives us \( m = 4 \) discontinuities. The points where \( f(x) \) is not differentiable are due to the change in the slope at these points. Specifically, the function is not differentiable at \( x = 2 \), so \( n = 1 \). Thus, \( m + n = 4 + 3 = 7 \).
Final Answer: \( m + n = 7 \).
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
