The function \( f(x) = [x] + |x - 2| \) consists of two components:
1. The greatest integer function, \( [x] \), which has discontinuities at integer values of \( x \).
2. The absolute value function, \( |x - 2| \), which has a critical point at \( x = 2 \). Now, consider the interval \( -2<x<3 \).
The points where \( f(x) \) is not continuous or differentiable are determined by:
- Discontinuities in \( [x] \), which happen at \( x = -1, 0, 1, 2 \).
- A critical point in \( |x - 2| \) at \( x = 2 \). So, the points where \( f(x) \) is not continuous are \( x = -1, 0, 1, 2 \), which gives us \( m = 4 \) discontinuities. The points where \( f(x) \) is not differentiable are due to the change in the slope at these points. Specifically, the function is not differentiable at \( x = 2 \), so \( n = 1 \). Thus, \( m + n = 4 + 3 = 7 \).
Final Answer: \( m + n = 7 \).
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.