Let \( X \) be a random variable with the probability density function \[ f(x) = \begin{cases} \dfrac{\alpha^{p}}{\Gamma(p)} e^{-\alpha x} x^{p-1}, & x \geq 0, \, \alpha > 0, \, p > 0, \\ 0, & \text{otherwise}. \end{cases} \] If \( E(X) = 20 \) and \( \text{Var}(X) = 10 \), then \( (\alpha, p) \) is
Step 1: Understand the given conditions.
The probability density function is of the Gamma distribution type, where the expectation and variance for a Gamma distribution with shape parameter \( p \) and rate parameter \( \alpha \) are: \[ E(X) = \frac{p}{\alpha}, \text{Var}(X) = \frac{p}{\alpha^2}. \]
Step 2: Solve for \( \alpha \) and \( p \).
We are given \( E(X) = 20 \) and \( \text{Var}(X) = 10 \). Using the formulas: \[ \frac{p}{\alpha} = 20 \,\,\text{and}\,\, \frac{p}{\alpha^2} = 10. \] From the first equation, solve for \( p \): \[ p = 20\alpha. \] Substitute this into the second equation: \[ \frac{20\alpha}{\alpha^2} = 10, \] which simplifies to: \[ \frac{20}{\alpha} = 10 \Rightarrow \alpha = 2. \] Now, substitute \( \alpha = 2 \) into \( p = 20\alpha \): \[ p = 20(2) = 40. \] Thus, \( \alpha = 2 \) and \( p = 40 \).
Step 3: Conclusion.
The correct answer is (B) (2, 40).
Let $X$ and $Y$ be independent random variables with respective moment generating functions $M_X(t) = \dfrac{(8 + e^t)^2}{81}$ and $M_Y(t) = \dfrac{(1 + 3e^t)^3}{64}$, $-\infty < t < \infty$. Then $P(X + Y = 1)$ equals .............. (round off to two decimal places).