Question:

Let $X$ be a random variable having Poisson(2) distribution. Then $E\left(\dfrac{1}{1+X}\right)$ equals

Show Hint

When summing over Poisson probabilities with shifted indices, substitution like $y = x+1$ often simplifies the series into an exponential form.
Updated On: Dec 4, 2025
  • $1 - e^{-2}$
  • $e^{-2}$
  • $\dfrac{1}{2}(1 - e^{-2})$
  • $\dfrac{1}{2} e^{-1}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Definition of expectation.
For a Poisson random variable with parameter $\lambda = 2$, \[ E\left(\frac{1}{1+X}\right) = \sum_{x=0}^{\infty} \frac{1}{1+x} \cdot P(X = x) = \sum_{x=0}^{\infty} \frac{1}{1+x} \cdot \frac{e^{-2} 2^x}{x!}. \]

Step 2: Simplify the series.
Let $y = x + 1$, then \[ E\left(\frac{1}{1+X}\right) = e^{-2} \sum_{y=1}^{\infty} \frac{2^{y-1}}{y!} = \frac{e^{-2}}{2} \sum_{y=1}^{\infty} \frac{2^y}{y!}. \]

Step 3: Evaluate the exponential series.
\[ \sum_{y=1}^{\infty} \frac{2^y}{y!} = e^2 - 1. \] Hence, \[ E\left(\frac{1}{1+X}\right) = \frac{1}{2}(1 - e^{-2}). \]

Step 4: Conclusion.
Therefore, the required expectation equals $\dfrac{1}{2}(1 - e^{-2})$.

Was this answer helpful?
0
0

Top Questions on Standard Univariate Distributions

View More Questions

Questions Asked in IIT JAM MS exam

View More Questions