Step 1: Definition of expectation.
For a Poisson random variable with parameter $\lambda = 2$,
\[
E\left(\frac{1}{1+X}\right) = \sum_{x=0}^{\infty} \frac{1}{1+x} \cdot P(X = x) = \sum_{x=0}^{\infty} \frac{1}{1+x} \cdot \frac{e^{-2} 2^x}{x!}.
\]
Step 2: Simplify the series.
Let $y = x + 1$, then
\[
E\left(\frac{1}{1+X}\right) = e^{-2} \sum_{y=1}^{\infty} \frac{2^{y-1}}{y!} = \frac{e^{-2}}{2} \sum_{y=1}^{\infty} \frac{2^y}{y!}.
\]
Step 3: Evaluate the exponential series.
\[
\sum_{y=1}^{\infty} \frac{2^y}{y!} = e^2 - 1.
\]
Hence,
\[
E\left(\frac{1}{1+X}\right) = \frac{1}{2}(1 - e^{-2}).
\]
Step 4: Conclusion.
Therefore, the required expectation equals $\dfrac{1}{2}(1 - e^{-2})$.
Let $X$ and $Y$ be independent random variables with respective moment generating functions $M_X(t) = \dfrac{(8 + e^t)^2}{81}$ and $M_Y(t) = \dfrac{(1 + 3e^t)^3}{64}$, $-\infty < t < \infty$. Then $P(X + Y = 1)$ equals .............. (round off to two decimal places).
Consider a sequence of independent Bernoulli trials with probability of success in each trial being $\dfrac{1}{5}$. Then which of the following statements is/are TRUE?