Step 1: Recall the Poisson distribution.
For a Poisson distribution with mean \( \lambda \), the probability mass function is given by:
\[
P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, k = 0, 1, 2, \dots
\]
Here, \( \lambda = \frac{1}{2} \).
Step 2: Use the definition of expected value.
The expected value of \( (X + 1)! \) is:
\[
E((X + 1)!) = \sum_{k=0}^{\infty} (k + 1)! \frac{\left(\frac{1}{2}\right)^k e^{-\frac{1}{2}}}{k!}.
\]
Simplifying the terms:
\[
E((X + 1)!) = e^{-\frac{1}{2}} \sum_{k=0}^{\infty} (k + 1) \left( \frac{1}{2} \right)^k.
\]
This sum is a standard result for Poisson-distributed random variables.
Step 3: Conclusion.
The correct answer is (B) \( 4e^{-\frac{1}{2}} \).
Let $X$ and $Y$ be independent random variables with respective moment generating functions $M_X(t) = \dfrac{(8 + e^t)^2}{81}$ and $M_Y(t) = \dfrac{(1 + 3e^t)^3}{64}$, $-\infty < t < \infty$. Then $P(X + Y = 1)$ equals .............. (round off to two decimal places).