We are given a polynomial equation \( P(x) = 4x^4 + 8x^3 - 17x^2 - 12x + 9 = 0 \) with roots \( x_1, x_2, x_3, x_4 \). We need to find the value of \( m \) from the given relation \( \left(4 + x_1^2\right)\left(4 + x_2^2\right)\left(4 + x_3^2\right)\left(4 + x_4^2\right) = \frac{125}{16} m \).
If a polynomial \( P(x) \) of degree \( n \) has a leading coefficient \( a_n \) and roots \( x_1, x_2, \ldots, x_n \), it can be written in factored form as:
\[ P(x) = a_n (x - x_1)(x - x_2) \cdots (x - x_n) \]The product \( \prod_{i=1}^{n} (k^2 + x_i^2) \) can be evaluated by considering the polynomial at complex values. Specifically, we use the identity \( k^2 + x_i^2 = -( -k^2 - x_i^2 ) = -( (ik)^2 - x_i^2 ) = (x_i - ik)(x_i + ik) \). This suggests evaluating \( P(ik) \) and \( P(-ik) \).
Since the coefficients of \( P(x) \) are real, we have \( P(\bar{z}) = \overline{P(z)} \). Therefore, \( P(-ik) = \overline{P(ik)} \), and their product is \( P(ik)P(-ik) = |P(ik)|^2 \).
Step 1: Write the polynomial in its factored form.
The given polynomial is \( P(x) = 4x^4 + 8x^3 - 17x^2 - 12x + 9 \). Since its roots are \( x_1, x_2, x_3, x_4 \), we can write:
\[ P(x) = 4(x - x_1)(x - x_2)(x - x_3)(x - x_4) \]Step 2: Evaluate the polynomial at \( x = 2i \) and \( x = -2i \).
Substituting \( x = 2i \):
\[ P(2i) = 4(2i - x_1)(2i - x_2)(2i - x_3)(2i - x_4) \]Substituting \( x = -2i \):
\[ P(-2i) = 4(-2i - x_1)(-2i - x_2)(-2i - x_3)(-2i - x_4) \]Step 3: Multiply \( P(2i) \) and \( P(-2i) \) to form the desired expression.
\[ P(2i) P(-2i) = 16 \prod_{k=1}^{4} (2i - x_k)(-2i - x_k) \]For each term in the product, we have:
\[ (2i - x_k)(-2i - x_k) = (-x_k + 2i)(-x_k - 2i) = (-x_k)^2 - (2i)^2 = x_k^2 - (-4) = x_k^2 + 4 \]Therefore, the product becomes:
\[ P(2i) P(-2i) = 16 \left(x_1^2 + 4\right)\left(x_2^2 + 4\right)\left(x_3^2 + 4\right)\left(x_4^2 + 4\right) \]From this, we can express the desired quantity as:
\[ \left(4 + x_1^2\right)\left(4 + x_2^2\right)\left(4 + x_3^2\right)\left(4 + x_4^2\right) = \frac{P(2i)P(-2i)}{16} \]Step 4: Calculate the value of \( P(2i) \).
\[ P(2i) = 4(2i)^4 + 8(2i)^3 - 17(2i)^2 - 12(2i) + 9 \]We use the powers of \( i \): \( i^2 = -1, i^3 = -i, i^4 = 1 \).
\[ P(2i) = 4(16 i^4) + 8(8 i^3) - 17(4 i^2) - 24i + 9 \] \[ P(2i) = 4(16) + 8(-8i) - 17(-4) - 24i + 9 \] \[ P(2i) = 64 - 64i + 68 - 24i + 9 \]Combining the real and imaginary parts:
\[ P(2i) = (64 + 68 + 9) + (-64 - 24)i = 141 - 88i \]Step 5: Calculate \( P(2i)P(-2i) \). Since the coefficients of \( P(x) \) are real, \( P(-2i) = \overline{P(2i)} = 141 + 88i \).
Thus, \( P(2i)P(-2i) = |P(2i)|^2 \).
\[ |P(2i)|^2 = (141)^2 + (-88)^2 \] \[ (141)^2 = 19881 \] \[ (-88)^2 = 7744 \] \[ |P(2i)|^2 = 19881 + 7744 = 27625 \]Step 6: Substitute this value back into the expression from Step 3.
\[ \left(4 + x_1^2\right)\left(4 + x_2^2\right)\left(4 + x_3^2\right)\left(4 + x_4^2\right) = \frac{27625}{16} \]Step 7: Equate this result to the given expression to find \( m \).
\[ \frac{27625}{16} = \frac{125}{16} m \]Canceling \( \frac{1}{16} \) from both sides, we get:
\[ 27625 = 125 m \]Solving for \( m \):
\[ m = \frac{27625}{125} \] \[ m = 221 \]Therefore, the value of \( m \) is 221.
The given polynomial can be expressed as:
\[ 4x^4 + 8x^3 - 17x^2 - 12x + 9 = 4(x - x_1)(x - x_2)(x - x_3)(x - x_4). \]
Let \(x_1 = 2i\) and \(x_2 = -2i\). Substituting these values:
\[ 64 - 64i + 68 - 24i + 9 = 4(2i - x_1)(2i - x_2)(2i - x_3)(2i - x_4). \]
Simplify:
\[ 141 - 88i \quad \dots \quad (1) \]
Similarly, for \(-2i\):
\[ 64 + 64i + 68 + 24i + 9 = 4(-2i - x_1)(-2i - x_2)(-2i - x_3)(-2i - x_4). \]
Simplify:
\[ 141 + 88i \quad \dots \quad (2) \]
Using the given condition:
\[ \frac{125}{16}m = \frac{141^2 + 88^2}{16}. \]
Calculate:
\[ m = 221. \]
If the sum of the first 10 terms of the series \[ \frac{4 \cdot 1}{1 + 4 \cdot 1^4} + \frac{4 \cdot 2}{1 + 4 \cdot 2^4} + \frac{4 \cdot 3}{1 + 4 \cdot 3^4} + \ldots \] is \(\frac{m}{n}\), where \(\gcd(m, n) = 1\), then \(m + n\) is equal to _____.
If \(\sum\)\(_{r=1}^n T_r\) = \(\frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64}\) , then \( \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{T_r} \) is equal to :
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 