Question:

Let \( x_1, x_2, x_3, x_4 \) be the solution of the equation \[ 4x^4 + 8x^3 - 17x^2 - 12x + 9 = 0 \] and \[ \left(4 + x_1^2\right)\left(4 + x_2^2\right)\left(4 + x_3^2\right)\left(4 + x_4^2\right) = \frac{125}{16} m.\] Then the value of \( m \) is ______.

Updated On: Nov 1, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 221

Approach Solution - 1

We are given a polynomial equation \( P(x) = 4x^4 + 8x^3 - 17x^2 - 12x + 9 = 0 \) with roots \( x_1, x_2, x_3, x_4 \). We need to find the value of \( m \) from the given relation \( \left(4 + x_1^2\right)\left(4 + x_2^2\right)\left(4 + x_3^2\right)\left(4 + x_4^2\right) = \frac{125}{16} m \).

Concept Used:

If a polynomial \( P(x) \) of degree \( n \) has a leading coefficient \( a_n \) and roots \( x_1, x_2, \ldots, x_n \), it can be written in factored form as:

\[ P(x) = a_n (x - x_1)(x - x_2) \cdots (x - x_n) \]

The product \( \prod_{i=1}^{n} (k^2 + x_i^2) \) can be evaluated by considering the polynomial at complex values. Specifically, we use the identity \( k^2 + x_i^2 = -( -k^2 - x_i^2 ) = -( (ik)^2 - x_i^2 ) = (x_i - ik)(x_i + ik) \). This suggests evaluating \( P(ik) \) and \( P(-ik) \).

Since the coefficients of \( P(x) \) are real, we have \( P(\bar{z}) = \overline{P(z)} \). Therefore, \( P(-ik) = \overline{P(ik)} \), and their product is \( P(ik)P(-ik) = |P(ik)|^2 \).

Step-by-Step Solution:

Step 1: Write the polynomial in its factored form.

The given polynomial is \( P(x) = 4x^4 + 8x^3 - 17x^2 - 12x + 9 \). Since its roots are \( x_1, x_2, x_3, x_4 \), we can write:

\[ P(x) = 4(x - x_1)(x - x_2)(x - x_3)(x - x_4) \]

Step 2: Evaluate the polynomial at \( x = 2i \) and \( x = -2i \).

Substituting \( x = 2i \):

\[ P(2i) = 4(2i - x_1)(2i - x_2)(2i - x_3)(2i - x_4) \]

Substituting \( x = -2i \):

\[ P(-2i) = 4(-2i - x_1)(-2i - x_2)(-2i - x_3)(-2i - x_4) \]

Step 3: Multiply \( P(2i) \) and \( P(-2i) \) to form the desired expression.

\[ P(2i) P(-2i) = 16 \prod_{k=1}^{4} (2i - x_k)(-2i - x_k) \]

For each term in the product, we have:

\[ (2i - x_k)(-2i - x_k) = (-x_k + 2i)(-x_k - 2i) = (-x_k)^2 - (2i)^2 = x_k^2 - (-4) = x_k^2 + 4 \]

Therefore, the product becomes:

\[ P(2i) P(-2i) = 16 \left(x_1^2 + 4\right)\left(x_2^2 + 4\right)\left(x_3^2 + 4\right)\left(x_4^2 + 4\right) \]

From this, we can express the desired quantity as:

\[ \left(4 + x_1^2\right)\left(4 + x_2^2\right)\left(4 + x_3^2\right)\left(4 + x_4^2\right) = \frac{P(2i)P(-2i)}{16} \]

Step 4: Calculate the value of \( P(2i) \).

\[ P(2i) = 4(2i)^4 + 8(2i)^3 - 17(2i)^2 - 12(2i) + 9 \]

We use the powers of \( i \): \( i^2 = -1, i^3 = -i, i^4 = 1 \).

\[ P(2i) = 4(16 i^4) + 8(8 i^3) - 17(4 i^2) - 24i + 9 \] \[ P(2i) = 4(16) + 8(-8i) - 17(-4) - 24i + 9 \] \[ P(2i) = 64 - 64i + 68 - 24i + 9 \]

Combining the real and imaginary parts:

\[ P(2i) = (64 + 68 + 9) + (-64 - 24)i = 141 - 88i \]

Step 5: Calculate \( P(2i)P(-2i) \). Since the coefficients of \( P(x) \) are real, \( P(-2i) = \overline{P(2i)} = 141 + 88i \).

Thus, \( P(2i)P(-2i) = |P(2i)|^2 \).

\[ |P(2i)|^2 = (141)^2 + (-88)^2 \] \[ (141)^2 = 19881 \] \[ (-88)^2 = 7744 \] \[ |P(2i)|^2 = 19881 + 7744 = 27625 \]

Final Computation & Result:

Step 6: Substitute this value back into the expression from Step 3.

\[ \left(4 + x_1^2\right)\left(4 + x_2^2\right)\left(4 + x_3^2\right)\left(4 + x_4^2\right) = \frac{27625}{16} \]

Step 7: Equate this result to the given expression to find \( m \).

\[ \frac{27625}{16} = \frac{125}{16} m \]

Canceling \( \frac{1}{16} \) from both sides, we get:

\[ 27625 = 125 m \]

Solving for \( m \):

\[ m = \frac{27625}{125} \] \[ m = 221 \]

Therefore, the value of \( m \) is 221.

Was this answer helpful?
1
1
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

The given polynomial can be expressed as:

\[ 4x^4 + 8x^3 - 17x^2 - 12x + 9 = 4(x - x_1)(x - x_2)(x - x_3)(x - x_4). \]

Let \(x_1 = 2i\) and \(x_2 = -2i\). Substituting these values:

\[ 64 - 64i + 68 - 24i + 9 = 4(2i - x_1)(2i - x_2)(2i - x_3)(2i - x_4). \]

Simplify:

\[ 141 - 88i \quad \dots \quad (1) \]

Similarly, for \(-2i\):

\[ 64 + 64i + 68 + 24i + 9 = 4(-2i - x_1)(-2i - x_2)(-2i - x_3)(-2i - x_4). \]

Simplify:

\[ 141 + 88i \quad \dots \quad (2) \]

Using the given condition:

\[ \frac{125}{16}m = \frac{141^2 + 88^2}{16}. \]

Calculate:

\[ m = 221. \]

Was this answer helpful?
0
0