The given polynomial can be expressed as:
\[ 4x^4 + 8x^3 - 17x^2 - 12x + 9 = 4(x - x_1)(x - x_2)(x - x_3)(x - x_4). \]
Let \(x_1 = 2i\) and \(x_2 = -2i\). Substituting these values:
\[ 64 - 64i + 68 - 24i + 9 = 4(2i - x_1)(2i - x_2)(2i - x_3)(2i - x_4). \]
Simplify:
\[ 141 - 88i \quad \dots \quad (1) \]
Similarly, for \(-2i\):
\[ 64 + 64i + 68 + 24i + 9 = 4(-2i - x_1)(-2i - x_2)(-2i - x_3)(-2i - x_4). \]
Simplify:
\[ 141 + 88i \quad \dots \quad (2) \]
Using the given condition:
\[ \frac{125}{16}m = \frac{141^2 + 88^2}{16}. \]
Calculate:
\[ m = 221. \]