The given polynomial can be expressed as:
\[ 4x^4 + 8x^3 - 17x^2 - 12x + 9 = 4(x - x_1)(x - x_2)(x - x_3)(x - x_4). \]
Let \(x_1 = 2i\) and \(x_2 = -2i\). Substituting these values:
\[ 64 - 64i + 68 - 24i + 9 = 4(2i - x_1)(2i - x_2)(2i - x_3)(2i - x_4). \]
Simplify:
\[ 141 - 88i \quad \dots \quad (1) \]
Similarly, for \(-2i\):
\[ 64 + 64i + 68 + 24i + 9 = 4(-2i - x_1)(-2i - x_2)(-2i - x_3)(-2i - x_4). \]
Simplify:
\[ 141 + 88i \quad \dots \quad (2) \]
Using the given condition:
\[ \frac{125}{16}m = \frac{141^2 + 88^2}{16}. \]
Calculate:
\[ m = 221. \]
If \(\sum\)\(_{r=1}^n T_r\) = \(\frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64}\) , then \( \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{T_r} \) is equal to :
Consider the following oxides:
V_2O_5, Cr_2O_3, Mn_2O_7, V_2O_3, VO_2
A number of oxides which are acidic is \( x \).
Consider the following complex compound:
[Co(NH_2CH_2CH_2NH_2)_3](SO_4)_3
The primary valency of the complex is \( y \).
What is the value of \( x + y \) is?
If \( \text{Re} \left( \frac{2z + i}{z + i} \right) + \text{Re} \left( \frac{2z - i}{z - i} \right) = 2 \) is a circle of radius \( r \) and centre \( (a, b) \), then \( \frac{15ab}{r^2} \) is equal to:
If two vectors \( \mathbf{a} \) and \( \mathbf{b} \) satisfy the equation:
\[ \frac{|\mathbf{a} + \mathbf{b}| + |\mathbf{a} - \mathbf{b}|}{|\mathbf{a} + \mathbf{b}| - |\mathbf{a} - \mathbf{b}|} = \sqrt{2} + 1, \]
then the value of
\[ \frac{|\mathbf{a} + \mathbf{b}|}{|\mathbf{a} - \mathbf{b}|} \]
is equal to: