Step 1: The given conditions provide us with information about the sum of the deviations from a constant, and the sum of squared deviations. The variance \( \sigma^2 \) is given as \( \frac{4}{5} \).
Step 2: The mean \( \mu \) can be computed from the sum of the observations and the number of observations, \( \mu = \frac{30}{10} = 3 \).
Step 3: Now, consider the new set of observations \( 2(x_i - 1) + 4B \). The transformation of each observation by scaling and shifting affects the mean and the variance.
Step 4: The mean \( \mu \) and the variance \( \sigma^2 \) of the transformed observations can be derived using the properties of linear transformations. After calculating these, we find that \( \frac{B\mu}{\sigma^2} \) is equal to 90. Thus, the correct answer is (3).
The shortest distance between the curves $ y^2 = 8x $ and $ x^2 + y^2 + 12y + 35 = 0 $ is:
The function \( f: (-\infty, \infty) \to (-\infty, 1) \), defined by \[ f(x) = \frac{2^x - 2^{-x}}{2^x + 2^{-x}}, \] is:

Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
Rate law for a reaction between $A$ and $B$ is given by $\mathrm{R}=\mathrm{k}[\mathrm{A}]^{\mathrm{n}}[\mathrm{B}]^{\mathrm{m}}$. If concentration of A is doubled and concentration of B is halved from their initial value, the ratio of new rate of reaction to the initial rate of reaction $\left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)$ is