Step 1: The given conditions provide us with information about the sum of the deviations from a constant, and the sum of squared deviations. The variance \( \sigma^2 \) is given as \( \frac{4}{5} \).
Step 2: The mean \( \mu \) can be computed from the sum of the observations and the number of observations, \( \mu = \frac{30}{10} = 3 \).
Step 3: Now, consider the new set of observations \( 2(x_i - 1) + 4B \). The transformation of each observation by scaling and shifting affects the mean and the variance.
Step 4: The mean \( \mu \) and the variance \( \sigma^2 \) of the transformed observations can be derived using the properties of linear transformations. After calculating these, we find that \( \frac{B\mu}{\sigma^2} \) is equal to 90. Thus, the correct answer is (3).
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
Let \( C_{t-1} = 28, C_t = 56 \) and \( C_{t+1} = 70 \). Let \( A(4 \cos t, 4 \sin t), B(2 \sin t, -2 \cos t) \text{ and } C(3r - n_1, r^2 - n - 1) \) be the vertices of a triangle ABC, where \( t \) is a parameter. If \( (3x - 1)^2 + (3y)^2 = \alpha \) is the locus of the centroid of triangle ABC, then \( \alpha \) equals: