We are given $\vec{a} = xi + yj + zk$ and $x = 2y$. So, $\vec{a} = 2y\,i + y\,j + z\,k$.
Given $|\vec{a}| = 5\sqrt{2}$, we have: $\sqrt{(2y)^2 + y^2 + z^2} = 5\sqrt{2}$
$\Rightarrow \sqrt{5y^2 + z^2} = 5\sqrt{2} \Rightarrow 5y^2 + z^2 = 50$
Also, $\cos(135^\circ) = \frac{z}{|\vec{a}|} = -\frac{1}{\sqrt{2}} \Rightarrow z = -5$
Substituting in the equation: $5y^2 + 25 = 50 \Rightarrow y^2 = 5 \Rightarrow y = \sqrt{5}$
Then $x = 2\sqrt{5}$ and $\vec{a} = 2\sqrt{5}i + \sqrt{5}j - 5k$