Step 1: Interpret the given conditions.
We have \( \vec{a}, \vec{b}, \vec{c} \) as unit vectors, so \( |\vec{a}| = |\vec{b}| = |\vec{c}| = 1 \). The conditions are:
\( \vec{a} \cdot \vec{b} = 0 \), so \( \vec{a} \) is perpendicular to \( \vec{b} \).
\( \vec{a} \cdot \vec{c} = 0 \), so \( \vec{a} \) is perpendicular to \( \vec{c} \).
The angle between \( \vec{b} \) and \( \vec{c} \) is \( \frac{\pi}{6} \), so:
\[
\vec{b} \cdot \vec{c} = |\vec{b}| |\vec{c}| \cos \left( \frac{\pi}{6} \right) = 1 \cdot 1 \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}.
\]
Step 2: Analyze the geometric implications.
Since \( \vec{a} \) is perpendicular to both \( \vec{b} \) and \( \vec{c} \), \( \vec{a} \) must be perpendicular to the plane spanned by \( \vec{b} \) and \( \vec{c} \). The cross product \( \vec{b} \times \vec{c} \) is a vector perpendicular to both \( \vec{b} \) and \( \vec{c} \), so \( \vec{a} \) must be parallel to \( \vec{b} \times \vec{c} \). Thus, we hypothesize:
\[
\vec{a} = k (\vec{b} \times \vec{c}),
\]
where \( k \) is a scalar, and since \( \vec{a} \) is a unit vector, we need to determine \( k \).
Step 3: Compute the magnitude of \( \vec{b} \times \vec{c} \).
The magnitude of the cross product \( \vec{b} \times \vec{c} \) is:
\[
|\vec{b} \times \vec{c}| = |\vec{b}| |\vec{c}| \sin \left( \frac{\pi}{6} \right) = 1 \cdot 1 \cdot \sin \left( \frac{\pi}{6} \right) = \sin \left( \frac{\pi}{6} \right) = \frac{1}{2}.
\]
If \( \vec{a} = k (\vec{b} \times \vec{c}) \), then:
\[
|\vec{a}| = |k| |\vec{b} \times \vec{c}| = |k| \cdot \frac{1}{2}.
\]
Since \( |\vec{a}| = 1 \):
\[
|k| \cdot \frac{1}{2} = 1 \implies |k| = 2 \implies k = \pm 2.
\]
Thus:
\[
\vec{a} = \pm 2 (\vec{b} \times \vec{c}).
\]
Step 4: Verify the result.
Check orthogonality: \( (\vec{b} \times \vec{c}) \cdot \vec{b} = 0 \) and \( (\vec{b} \times \vec{c}) \cdot \vec{c} = 0 \), so \( \vec{a} = \pm 2 (\vec{b} \times \vec{c}) \) satisfies \( \vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c} = 0 \).
Check the unit vector condition: The magnitude of \( \vec{a} = \pm 2 (\vec{b} \times \vec{c}) \) is 1, as computed above.
Option (D) \( \pm 2 (\vec{b} \times \vec{c}) \) matches exactly.