Let \( \vec{u} = \vec{5a} + \vec{2b} \), \( \vec{v} = \vec{a} - \vec{3b} \)
The diagonals of the parallelogram are \( \vec{u} + \vec{v} \) and \( \vec{u} - \vec{v} \)
\[
\vec{u} + \vec{v} = 6\vec{a} - \vec{b}, \quad \vec{u} - \vec{v} = 4\vec{a} + 5\vec{b}
\]
Now calculate magnitudes using vector identities:
\[
|\vec{a}| = 2\sqrt{2}, \quad |\vec{b}| = 3, \quad \vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos(45^\circ) = 2\sqrt{2} \cdot 3 \cdot \frac{1}{\sqrt{2}} = 6
\]
Calculate \( |\vec{u} + \vec{v}| = |6\vec{a} - \vec{b}| \):
\[
|6\vec{a} - \vec{b}|^2 = 36|\vec{a}|^2 + |\vec{b}|^2 - 2 \cdot 6 \cdot \vec{a} \cdot \vec{b} = 36 \cdot 8 + 9 - 72 = 225 \Rightarrow \text{Length} = 15
\]
\[
|4\vec{a} + 5\vec{b}|^2 = 16|\vec{a}|^2 + 25|\vec{b}|^2 + 40(\vec{a} \cdot \vec{b}) = 128 + 225 + 240 = 593 \Rightarrow \text{Length} = \sqrt{593}
\]