Given vectors:
\(\vec{a} = i + 2j + k, \quad \vec{b} = 3(i - j + k)\)
Let \( \vec{c} \) be a vector such that \( \vec{a} \times \vec{c} = \vec{b} \) and \( \vec{a} \cdot \vec{c} = 3 \). We need to evaluate:
\(\vec{a} \cdot \left[ (\vec{c} \times \vec{b}) - \vec{b} - \vec{c} \right]\)
Step 1. Expression Simplification: Consider:
\(\vec{a} \cdot \left[ (\vec{c} \times \vec{b}) - \vec{b} - \vec{c} \right] = \vec{a} \cdot (\vec{c} \times \vec{b}) - \vec{a} \cdot \vec{b} - \vec{a} \cdot \vec{c} \quad \text{...(i)}\)
Step 2. Given Conditions: It is given that:
\(\vec{a} \times \vec{c} = \vec{b}\)
Therefore:
\(\vec{a} \cdot (\vec{c} \times \vec{b}) = \vec{b} \cdot \vec{b} = |\vec{b}|^2\)
Calculating the magnitude:
\(\vec{b} = 3(i - j + k)\)
\(|\vec{b}|^2 = 3^2[(1)^2 + (-1)^2 + (1)^2] = 27\)
Thus:
\(\vec{a} \cdot (\vec{c} \times \vec{b}) = 27 \quad \text{...(ii)}\)
Step 3. Calculating \( \vec{a} \cdot \vec{b} \):
\(\vec{a} \cdot \vec{b} = (1)(3) + (2)(-3) + (1)(3) = 3 - 6 + 3 = 0 \quad \text{...(iii)}\)
Step 4. Given \( \vec{a} \cdot \vec{c} \):
\(\vec{a} \cdot \vec{c} = 3 \quad \text{...(iv)}\)
Step 5. Final Calculation: Substituting the values from (ii), (iii), and (iv) into (i):
\(\vec{a} \cdot \left[ (\vec{c} \times \vec{b}) - \vec{b} - \vec{c} \right] = 27 - 0 - 3 = 24\)
The respective values of \( |\vec{a}| \) and} \( |\vec{b}| \), if given \[ (\vec{a} - \vec{b}) \cdot (\vec{a} + \vec{b}) = 512 \quad \text{and} \quad |\vec{a}| = 3 |\vec{b}|, \] are:
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: