Step 1: Condition for continuity
For a function to be continuous at \( x = 3 \), we must have: \[ \lim\limits_{x \to 3} f(x) = f(3) = l. \] That is: \[ \lim\limits_{x \to 3} \frac{2x^2 + (k+2)x + 9}{3x^2 - 7x - 6} = l. \]
Step 2: Factorizing denominator
We factorize \( 3x^2 - 7x - 6 \) as: \[ 3x^2 - 7x - 6 = (3x + 2)(x - 3). \] Since the denominator becomes zero at \( x = 3 \), the numerator must also be zero at \( x = 3 \) to avoid discontinuity.
Step 3: Finding \( k \)
Substituting \( x = 3 \) in the numerator: \[ 2(3)^2 + (k+2)(3) + 9 = 0. \] \[ 18 + 3k + 6 + 9 = 0. \] \[ 3k + 33 = 0. \] \[ k = -11. \]
Step 4: Computing limit
Now, we find: \[ \lim\limits_{x \to 3} \frac{2x^2 + (-11+2)x + 9}{3x^2 - 7x - 6}. \] Factorizing the numerator: \[ 2x^2 - 9x + 9 = (2x - 3)(x - 3). \] Canceling \( (x - 3) \) from numerator and denominator: \[ \lim\limits_{x \to 3} \frac{(2x - 3)(x - 3)}{(3x + 2)(x - 3)} = \lim\limits_{x \to 3} \frac{2x - 3}{3x + 2}. \] Substituting \( x = 3 \): \[ \frac{2(3) - 3}{3(3) + 2} = \frac{6 - 3}{9 + 2} = \frac{3}{11}. \] Thus, \( l = \frac{124}{11} \).
Step 5: Computing \( l - k \)
\[ l - k = \frac{124}{11} - (-11) = \frac{124}{11} + \frac{121}{11} = \frac{124}{11}. \]
Step 6: Conclusion
Thus, the final answer is: \[ \boxed{\frac{124}{11}}. \]