Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
From the following information, calculate Opening Trade Receivables and Closing Trade Receivables :
Trade Receivables Turnover Ratio - 4 times
Closing Trade Receivables were Rs 20,000 more than that in the beginning.
Cost of Revenue from operations - Rs 6,40,000.
Cash Revenue from operations \( \frac{1}{3} \)rd of Credit Revenue from operations
Gross Profit Ratio - 20%
Draw a rough sketch for the curve $y = 2 + |x + 1|$. Using integration, find the area of the region bounded by the curve $y = 2 + |x + 1|$, $x = -4$, $x = 3$, and $y = 0$.