First, let's simplify the expression for \( z \):
$$ z = \frac{1 - i}{\sqrt{1 + i}} $$
We can write \( 1 + i \) in polar form: \( 1 + i = \sqrt{1^2 + 1^2} e^{i \arctan(1/1)} = \sqrt{2} e^{i \pi/4} \).
Then, \( \sqrt{1 + i} = (\sqrt{2} e^{i \pi/4})^{1/2} = 2^{1/4} e^{i \pi/8} \).
Now, let's write \( 1 - i \) in polar form: \( 1 - i = \sqrt{1^2 + (-1)^2} e^{i \arctan(-1/1)} = \sqrt{2} e^{-i \pi/4} \).
So, \( z = \frac{\sqrt{2} e^{-i \pi/4}}{2^{1/4} e^{i \pi/8}} = 2^{1/2 - 1/4} e^{-i \pi/4 - i \pi/8} = 2^{1/4} e^{-i (2\pi + \pi)/8} = 2^{1/4} e^{-i 3\pi/8} \).
The argument of \( z \) is \( -\frac{3\pi}{8} \).
However, the square root has two values.
Let \( w = 1 + i = \sqrt{2} e^{i (\pi/4 + 2k\pi)} \), where \( k \) is an integer.
Then \( \sqrt{w} = 2^{1/4} e^{i (\pi/8 + k\pi)} \).
For \( k = 0 \), \( \sqrt{w_1} = 2^{1/4} e^{i \pi/8} \).
For \( k = 1 \), \( \sqrt{w_2} = 2^{1/4} e^{i (\pi/8 + \pi)} = 2^{1/4} e^{i 9\pi/8} \).
So the two values of \( z \) are:
$$ z_1 = \frac{\sqrt{2} e^{-i \pi/4}}{2^{1/4} e^{i \pi/8}} = 2^{1/4} e^{-i 3\pi/8} $$
$$ z_2 = \frac{\sqrt{2} e^{-i \pi/4}}{2^{1/4} e^{i 9\pi/8}} = 2^{1/4} e^{-i (\pi/4 - 9\pi/8)} = 2^{1/4} e^{-i (2\pi - 9\pi)/8} = 2^{1/4} e^{i 7\pi/8} $$
The arguments are \( \text{Arg}(z_1) = -\frac{3\pi}{8} \) and \( \text{Arg}(z_2) = \frac{7\pi}{8} \).
We have \( -\frac{\pi}{2}<-\frac{3\pi}{8}<\frac{7\pi}{8}<\pi \), which satisfies the given condition.
Then, \( \text{Arg}(z_1) + \text{Arg}(z_2) = -\frac{3\pi}{8} + \frac{7\pi}{8} = \frac{4\pi}{8} = \frac{\pi}{2} \).