Let the three sides of a triangle are on the lines
\(
4x - 7y + 10 = 0,\quad x + y = 5,\quad 7x + 4y = 15
\).
Then the distance of its orthocentre from the orthocentre of the triangle formed by the lines
\(
x = 0,\quad y = 0,\quad x + y = 1
\)
is
Lines of the first triangle: \(4x-7y+10=0,\; x+y=5,\; 7x+4y=15\).
In a right triangle, the orthocenter is the vertex where the two perpendicular sides meet.
Step 1: Check perpendicular sides.
Slopes: \(m_1=\dfrac{4}{7}\) for \(4x-7y+10=0\), and \(m_3=-\dfrac{7}{4}\) for \(7x+4y=15\). Since \(m_1 m_3=-1\), these two lines are perpendicular. Hence the triangle is right-angled at their intersection.
Step 2: Orthocenter \(H\) of the first triangle is their intersection.
\[ \begin{cases} 4x-7y+10=0\\ 7x+4y-15=0 \end{cases} \Rightarrow \begin{aligned} 4x-7y&=-10\\ 7x+4y&=15 \end{aligned} \Rightarrow x=1,\; y=2. \] So \(H=(1,2)\).
Step 3: Orthocenter of the triangle formed by \(x=0,\; y=0,\; x+y=1\).
It’s a right triangle at the origin, so orthocenter \(H_0=(0,0)\).
\[ \text{Distance } = \sqrt{(1-0)^2+(2-0)^2}=\sqrt{1+4}=\boxed{\sqrt{5}}. \]
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
