We are tasked with finding the minimum distance between two circles, \( C_1 \) and \( C_2 \), given their centers and radii. Let us proceed step by step:
1. Given Information:
The centers and radii of the circles are:
\( C_1(8, 2), \quad r_1 = 1 \)
\( C_2(2, 6), \quad r_2 = 2 \)
2. Distance Between the Centers:
The distance between the centers \( C_1 \) and \( C_2 \) is given by the Euclidean distance formula:
\( C_1C_2 = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \)
3. Minimum Distance Between the Circles:
The minimum distance between the two circles is the distance between their centers minus the sum of their radii:
\( |z_1 - z_2| = C_1C_2 - (r_1 + r_2) \)
Substitute \( C_1C_2 = 10 \), \( r_1 = 1 \), and \( r_2 = 2 \):
\( |z_1 - z_2| = 10 - (1 + 2) \)
\( |z_1 - z_2| = 10 - 3 = 7 \)
Final Answer:
The minimum distance between the two circles is \( \boxed{7} \).
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.