We are tasked with finding the minimum distance between two circles, \( C_1 \) and \( C_2 \), given their centers and radii. Let us proceed step by step:
1. Given Information:
The centers and radii of the circles are:
\( C_1(8, 2), \quad r_1 = 1 \)
\( C_2(2, 6), \quad r_2 = 2 \)
2. Distance Between the Centers:
The distance between the centers \( C_1 \) and \( C_2 \) is given by the Euclidean distance formula:
\( C_1C_2 = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \)
3. Minimum Distance Between the Circles:
The minimum distance between the two circles is the distance between their centers minus the sum of their radii:
\( |z_1 - z_2| = C_1C_2 - (r_1 + r_2) \)
Substitute \( C_1C_2 = 10 \), \( r_1 = 1 \), and \( r_2 = 2 \):
\( |z_1 - z_2| = 10 - (1 + 2) \)
\( |z_1 - z_2| = 10 - 3 = 7 \)
Final Answer:
The minimum distance between the two circles is \( \boxed{7} \).
Statement-1: \( \text{ClF}_3 \) has 3 possible structures.
Statement-2: \( \text{III} \) is the most stable structure due to least lone pair-bond pair (lp-bp) repulsion.
Which of the following options is correct?
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Choke coil is simply a coil having a large inductance but a small resistance. Choke coils are used with fluorescent mercury-tube fittings. If household electric power is directly connected to a mercury tube, the tube will be damaged.
Reason (R): By using the choke coil, the voltage across the tube is reduced by a factor \( \frac{R}{\sqrt{R^2 + \omega^2 L^2}} \), where \( \omega \) is the frequency of the supply across resistor \( R \) and inductor \( L \). If the choke coil were not used, the voltage across the resistor would be the same as the applied voltage.
In light of the above statements, choose the most appropriate answer from the options given below: