For the given system of equations to have an infinite number of solutions, the determinant of the coefficient matrix must be zero, and the system must be consistent.
The coefficient matrix is given by:
\[ A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 4 & 3 & \lambda \end{bmatrix} \]
We compute the determinant of \( A \):
\[ \text{Det}(A) = 1 \times (3\lambda - 3) - 2 \times (2\lambda - 4) + 3 \times (6 - 12) \]
Simplifying each term:
\[ \text{Det}(A) = 3\lambda - 3 - 4\lambda + 8 - 18 = -\lambda + 5 - 18 = -\lambda - 13 \]
For the system to have an infinite number of solutions, we must have:
\[ -\lambda - 13 = 0 \implies \lambda = -13 \]
Consistency Condition
For the system to be consistent, the augmented matrix must have a rank less than 3. The augmented matrix is given by:
\[ [A \mid b] = \begin{bmatrix} 1 & 2 & 3 & 5 \\ 2 & 3 & 1 & 9 \\ 4 & 3 & -13 & \mu \end{bmatrix} \]
The first two rows imply:
\[ x + 2y + 3z = 5, \quad 2x + 3y + z = 9 \]
To ensure consistency, the third equation must be a linear combination of the first two. We find \( \mu \) by substituting \( \lambda = -13 \) and expressing the third equation as a linear combination of the first two:
\[ 4x + 3y - 13z = \alpha(x + 2y + 3z) + \beta(2x + 3y + z) \]
Matching coefficients, we get:
\[ 4 = \alpha + 2\beta, \quad 3 = 2\alpha + 3\beta, \quad -13 = 3\alpha + \beta \]
Solving this system of equations yields:
\[ \alpha = 2, \quad \beta = -1, \quad \mu = 17 \]
Calculating \( \lambda + 2\mu \)
\[ \lambda + 2\mu = -13 + 2 \times 17 = -13 + 34 = 17 \]
Conclusion: \( \lambda + 2\mu = 17 \).
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81.
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
Match List-I with List-II: List-I