Let the solution curve \( x = x(y) \), \( 0 < y \leq \frac{\pi}{2} \), of the differential equation \[ (\log_e (\cos y))^2 \cos y \, dx - (1 + 3x \log_e (\cos y)) \sin y \, dy = 0 \] satisfy \( x \left( \frac{\pi}{3} \right) = \frac{1}{2 \log_e 2} \). If \( x \left( \frac{\pi}{6} \right) = \frac{1}{\log_e m - \log_e n} \), where \( m \) and \( n \) are co-prime integers, then \( mn \) is equal to ______.
When solving differential equations involving logarithmic terms, substitution can simplify the equation. Carefully apply initial conditions to determine constants.
\( (\log_e (\cos y))^2 \cos y \, dx - (1 + 3x \log_e (\cos y)) \sin y \, dy = 0 \).
\( (\log_e (\cos y))^2 \cos y \, \frac{dx}{dy} = (1 + 3x \log_e (\cos y)) \sin y \).
\( \frac{dx}{dy} = \frac{1 + 3x \log_e (\cos y)}{\log_e (\cos y)^2} \cdot \tan y \).
\( \frac{1}{\cos y} (-\sin y) \, dy = dt \quad \Rightarrow \quad -\tan y \, dy = dt \).
\( \frac{dx}{dt} = \frac{-1 - 3x t}{t^2} \).
\( t^2 \frac{dx}{dt} + 3x t = -1 \).
\( \frac{d}{dt} \left( x e^{3t^2/2} \right) = -\frac{e^{3t^2/2}}{t^2} \).
\( x e^{3t^2/2} = \int -\frac{e^{3t^2/2}}{t^2} \, dt + C \).
\( x \ln^3 (\cos y) = \frac{\sin y}{\cos y} \ln (\cos y) + C \).
\( x \cdot (-\ln 2)^3 = \frac{\sin (\pi/3)}{\cos (\pi/3)} (-\ln 2) + C \).
\( C = -\frac{(\ln 2)^2 \sqrt{3}}{2} \).
\( x \cdot (\ln \sqrt{3} - \ln 2)^3 = \frac{\sin (\pi/6)}{\cos (\pi/6)} (\ln \sqrt{3} - \ln 2) + C \).
\( x = \frac{1}{\ln 4 - \ln 3} \).
\( \ln \frac{m}{n} = \ln \frac{4}{3} \).
\( mn = 4 \cdot 3 = 12 \).
The eccentricity of the curve represented by $ x = 3 (\cos t + \sin t) $, $ y = 4 (\cos t - \sin t) $ is: