Let the solution curve \( x = x(y) \), \( 0 < y \leq \frac{\pi}{2} \), of the differential equation \[ (\log_e (\cos y))^2 \cos y \, dx - (1 + 3x \log_e (\cos y)) \sin y \, dy = 0 \] satisfy \( x \left( \frac{\pi}{3} \right) = \frac{1}{2 \log_e 2} \). If \( x \left( \frac{\pi}{6} \right) = \frac{1}{\log_e m - \log_e n} \), where \( m \) and \( n \) are co-prime integers, then \( mn \) is equal to ______.
When solving differential equations involving logarithmic terms, substitution can simplify the equation. Carefully apply initial conditions to determine constants.
\( (\log_e (\cos y))^2 \cos y \, dx - (1 + 3x \log_e (\cos y)) \sin y \, dy = 0 \).
\( (\log_e (\cos y))^2 \cos y \, \frac{dx}{dy} = (1 + 3x \log_e (\cos y)) \sin y \).
\( \frac{dx}{dy} = \frac{1 + 3x \log_e (\cos y)}{\log_e (\cos y)^2} \cdot \tan y \).
\( \frac{1}{\cos y} (-\sin y) \, dy = dt \quad \Rightarrow \quad -\tan y \, dy = dt \).
\( \frac{dx}{dt} = \frac{-1 - 3x t}{t^2} \).
\( t^2 \frac{dx}{dt} + 3x t = -1 \).
\( \frac{d}{dt} \left( x e^{3t^2/2} \right) = -\frac{e^{3t^2/2}}{t^2} \).
\( x e^{3t^2/2} = \int -\frac{e^{3t^2/2}}{t^2} \, dt + C \).
\( x \ln^3 (\cos y) = \frac{\sin y}{\cos y} \ln (\cos y) + C \).
\( x \cdot (-\ln 2)^3 = \frac{\sin (\pi/3)}{\cos (\pi/3)} (-\ln 2) + C \).
\( C = -\frac{(\ln 2)^2 \sqrt{3}}{2} \).
\( x \cdot (\ln \sqrt{3} - \ln 2)^3 = \frac{\sin (\pi/6)}{\cos (\pi/6)} (\ln \sqrt{3} - \ln 2) + C \).
\( x = \frac{1}{\ln 4 - \ln 3} \).
\( \ln \frac{m}{n} = \ln \frac{4}{3} \).
\( mn = 4 \cdot 3 = 12 \).
If the area of the region $\{ (x, y) : |x - 5| \leq y \leq 4\sqrt{x} \}$ is $A$, then $3A$ is equal to
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
