Let the solution curve \( x = x(y) \), \( 0 < y \leq \frac{\pi}{2} \), of the differential equation \[ (\log_e (\cos y))^2 \cos y \, dx - (1 + 3x \log_e (\cos y)) \sin y \, dy = 0 \] satisfy \( x \left( \frac{\pi}{3} \right) = \frac{1}{2 \log_e 2} \). If \( x \left( \frac{\pi}{6} \right) = \frac{1}{\log_e m - \log_e n} \), where \( m \) and \( n \) are co-prime integers, then \( mn \) is equal to ______.
When solving differential equations involving logarithmic terms, substitution can simplify the equation. Carefully apply initial conditions to determine constants.
\( (\log_e (\cos y))^2 \cos y \, dx - (1 + 3x \log_e (\cos y)) \sin y \, dy = 0 \).
\( (\log_e (\cos y))^2 \cos y \, \frac{dx}{dy} = (1 + 3x \log_e (\cos y)) \sin y \).
\( \frac{dx}{dy} = \frac{1 + 3x \log_e (\cos y)}{\log_e (\cos y)^2} \cdot \tan y \).
\( \frac{1}{\cos y} (-\sin y) \, dy = dt \quad \Rightarrow \quad -\tan y \, dy = dt \).
\( \frac{dx}{dt} = \frac{-1 - 3x t}{t^2} \).
\( t^2 \frac{dx}{dt} + 3x t = -1 \).
\( \frac{d}{dt} \left( x e^{3t^2/2} \right) = -\frac{e^{3t^2/2}}{t^2} \).
\( x e^{3t^2/2} = \int -\frac{e^{3t^2/2}}{t^2} \, dt + C \).
\( x \ln^3 (\cos y) = \frac{\sin y}{\cos y} \ln (\cos y) + C \).
\( x \cdot (-\ln 2)^3 = \frac{\sin (\pi/3)}{\cos (\pi/3)} (-\ln 2) + C \).
\( C = -\frac{(\ln 2)^2 \sqrt{3}}{2} \).
\( x \cdot (\ln \sqrt{3} - \ln 2)^3 = \frac{\sin (\pi/6)}{\cos (\pi/6)} (\ln \sqrt{3} - \ln 2) + C \).
\( x = \frac{1}{\ln 4 - \ln 3} \).
\( \ln \frac{m}{n} = \ln \frac{4}{3} \).
\( mn = 4 \cdot 3 = 12 \).
If the area of the region $\{ (x, y) : |x - 5| \leq y \leq 4\sqrt{x} \}$ is $A$, then $3A$ is equal to
Consider the following reaction occurring in the blast furnace. \[ {Fe}_3{O}_4(s) + 4{CO}(g) \rightarrow 3{Fe}(l) + 4{CO}_2(g) \] ‘x’ kg of iron is produced when \(2.32 \times 10^3\) kg \(Fe_3O_4\) and \(2.8 \times 10^2 \) kg CO are brought together in the furnace.
The value of ‘x’ is __________ (nearest integer).
Among the following cations, the number of cations which will give characteristic precipitate in their identification tests with
\(K_4\)[Fe(CN)\(_6\)] is : \[ {Cu}^{2+}, \, {Fe}^{3+}, \, {Ba}^{2+}, \, {Ca}^{2+}, \, {NH}_4^+, \, {Mg}^{2+}, \, {Zn}^{2+} \]
X g of benzoic acid on reaction with aqueous \(NaHCO_3\) release \(CO_2\) that occupied 11.2 L volume at STP. X is ________ g.
Standard entropies of \(X_2\), \(Y_2\) and \(XY_5\) are 70, 50, and 110 J \(K^{-1}\) mol\(^{-1}\) respectively. The temperature in Kelvin at which the reaction \[ \frac{1}{2} X_2 + \frac{5}{2} Y_2 \rightarrow XY_5 \quad \Delta H = -35 \, {kJ mol}^{-1} \] will be at equilibrium is (nearest integer):
37.8 g \( N_2O_5 \) was taken in a 1 L reaction vessel and allowed to undergo the following reaction at 500 K: \[ 2N_2O_5(g) \rightarrow 2N_2O_4(g) + O_2(g) \]
The total pressure at equilibrium was found to be 18.65 bar. Then, \( K_p \) is: Given: \[ R = 0.082 \, \text{bar L mol}^{-1} \, \text{K}^{-1} \]