The correct answer is (C) : \(3^{32}\)
\(A^2=\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix}\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix}=I\)
\(B_0=(A^2)^{49}+2(A^2)^{24}A⇒B_0=2A+I\)
\(B_0=\begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 3 \\ \end{bmatrix}⇒|B_0|=-9\)
\(B_4=adj\ B_3=adj(adj\ B_2)=adj(adj(adj\ B_1)=adj(adj/adj(adj\ B_0)\)
\(|B_4|=|B_0|^{(3-1)^4}\)
\(=|B_0|^{16}=(-9)^{16}\)
\(=(-9)^{16}=3^{32}\)
Let \[ f(x)=\int \frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2}\,dx \] and $f(1)=\frac14$. Given that 
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to

A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.
