Let the line of the shortest distance between the lines \(L_1: \vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda(\hat{i} - \hat{j} + \hat{k})\) and \(L_2: \vec{r} = (4\hat{i} + 5\hat{j} + 6\hat{k}) + \mu(\hat{i} + \hat{j} - \hat{k})\) intersect \(L_1\) and \(L_2\) at \(P\) and \(Q\), respectively. If \((\alpha, \beta, \gamma)\) is the midpoint of the line segment \(PQ\), then \(2(\alpha + \beta + \gamma)\) is equal to ____.
The line of shortest distance between two skew lines is perpendicular to both lines. The points \(P\) and \(Q\) on \(L_1\) and \(L_2\) respectively can be found using the condition that the vector \(\vec{PQ}\) is perpendicular to both direction vectors. The midpoint coordinates are then used to find the required expression.
Step 1: Write the general points on \(L_1\) and \(L_2\).
For \(L_1\): \(\vec{r}_1 = (1, 2, 3) + \lambda(1, -1, 1)\) ⇒ \(P = (1+\lambda, 2-\lambda, 3+\lambda)\)
For \(L_2\): \(\vec{r}_2 = (4, 5, 6) + \mu(1, 1, -1)\) ⇒ \(Q = (4+\mu, 5+\mu, 6-\mu)\)
Step 2: Find the vector \(\vec{PQ}\).
\[ \vec{PQ} = \vec{OQ} - \vec{OP} = (4+\mu - (1+\lambda), 5+\mu - (2-\lambda), 6-\mu - (3+\lambda)) \] \[ \vec{PQ} = (3 + \mu - \lambda, 3 + \mu + \lambda, 3 - \mu - \lambda) \]
Step 3: Apply the condition that \(\vec{PQ}\) is perpendicular to both direction vectors.
Direction vector of \(L_1\): \(\vec{d}_1 = (1, -1, 1)\)
Direction vector of \(L_2\): \(\vec{d}_2 = (1, 1, -1)\)
Condition 1: \(\vec{PQ} \cdot \vec{d}_1 = 0\)
\[ (3 + \mu - \lambda)(1) + (3 + \mu + \lambda)(-1) + (3 - \mu - \lambda)(1) = 0 \] \[ (3 + \mu - \lambda) - (3 + \mu + \lambda) + (3 - \mu - \lambda) = 0 \] \[ 3 + \mu - \lambda - 3 - \mu - \lambda + 3 - \mu - \lambda = 0 \] \[ 3 - \mu - 3\lambda = 0 \quad \Rightarrow \quad \mu + 3\lambda = 3 \quad \text{(1)} \]
Condition 2: \(\vec{PQ} \cdot \vec{d}_2 = 0\)
\[ (3 + \mu - \lambda)(1) + (3 + \mu + \lambda)(1) + (3 - \mu - \lambda)(-1) = 0 \] \[ (3 + \mu - \lambda) + (3 + \mu + \lambda) - (3 - \mu - \lambda) = 0 \] \[ 3 + \mu - \lambda + 3 + \mu + \lambda - 3 + \mu + \lambda = 0 \] \[ 3 + 3\mu + \lambda = 0 \quad \Rightarrow \quad 3\mu + \lambda = -3 \quad \text{(2)} \]
Step 4: Solve equations (1) and (2) to find \(\lambda\) and \(\mu\).
From (1): \(\mu = 3 - 3\lambda\)
Substitute into (2):
\[ 3(3 - 3\lambda) + \lambda = -3 \] \[ 9 - 9\lambda + \lambda = -3 \] \[ 9 - 8\lambda = -3 \] \[ 8\lambda = 12 \Rightarrow \lambda = \frac{3}{2} \]
Then \(\mu = 3 - 3(\frac{3}{2}) = 3 - \frac{9}{2} = -\frac{3}{2}\)
Step 5: Find coordinates of P and Q.
\(P = (1+\lambda, 2-\lambda, 3+\lambda) = (1+\frac{3}{2}, 2-\frac{3}{2}, 3+\frac{3}{2}) = (\frac{5}{2}, \frac{1}{2}, \frac{9}{2})\)
\(Q = (4+\mu, 5+\mu, 6-\mu) = (4-\frac{3}{2}, 5-\frac{3}{2}, 6+\frac{3}{2}) = (\frac{5}{2}, \frac{7}{2}, \frac{15}{2})\)
Step 6: Find the midpoint \((\alpha, \beta, \gamma)\) of PQ.
\[ \alpha = \frac{\frac{5}{2} + \frac{5}{2}}{2} = \frac{5}{2}, \quad \beta = \frac{\frac{1}{2} + \frac{7}{2}}{2} = \frac{4}{2} = 2, \quad \gamma = \frac{\frac{9}{2} + \frac{15}{2}}{2} = \frac{12}{2} = 6 \]
So \((\alpha, \beta, \gamma) = (\frac{5}{2}, 2, 6)\)
Step 7: Compute \(2(\alpha + \beta + \gamma)\).
\[ \alpha + \beta + \gamma = \frac{5}{2} + 2 + 6 = \frac{5}{2} + 8 = \frac{5 + 16}{2} = \frac{21}{2} \] \[ 2(\alpha + \beta + \gamma) = 2 \times \frac{21}{2} = 21 \]
Hence, \(2(\alpha + \beta + \gamma)\) is equal to 21.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
