Step 1: Definition of hyperbolic cosine The formula for hyperbolic cosine is: \[ \cosh x = \frac{e^x + e^{-x}}{2}. \] Substituting \( x = \log 4 \): \[ \cosh (\log 4) = \frac{e^{\log 4} + e^{-\log 4}}{2}. \] Step 2: Evaluating exponential terms Since \( e^{\log 4} = 4 \) and \( e^{-\log 4} = \frac{1}{4} \), we get: \[ \cosh (\log 4) = \frac{4 + \frac{1}{4}}{2} = \frac{\frac{16}{4} + \frac{1}{4}}{2} = \frac{\frac{17}{4}}{2} = \frac{17}{8}. \]
Let $E_1$ and $E_2$ be two independent events of a random experiment such that
$P(E_1) = \frac{1}{2}, \quad P(E_1 \cup E_2) = \frac{2}{3}$.
Then match the items of List-I with the items of List-II:
The correct match is:
In the given circuit, the potential difference across the 5 \(\mu\)F capacitor is