Step 1: Definition of hyperbolic cosine The formula for hyperbolic cosine is: \[ \cosh x = \frac{e^x + e^{-x}}{2}. \] Substituting \( x = \log 4 \): \[ \cosh (\log 4) = \frac{e^{\log 4} + e^{-\log 4}}{2}. \] Step 2: Evaluating exponential terms Since \( e^{\log 4} = 4 \) and \( e^{-\log 4} = \frac{1}{4} \), we get: \[ \cosh (\log 4) = \frac{4 + \frac{1}{4}}{2} = \frac{\frac{16}{4} + \frac{1}{4}}{2} = \frac{\frac{17}{4}}{2} = \frac{17}{8}. \]
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))