The given hyperbola equation can be rewritten as:
\[ \frac{x^2}{\frac{1}{2}} - \frac{y^2}{\frac{1}{2}} = 1. \]
So, its eccentricity is given by:
\[ e_h = \sqrt{1 + \frac{1}{2}} = \sqrt{\frac{3}{2}}. \]
Since the eccentricity of the ellipse is the reciprocal of that of the hyperbola:
\[ e_e = \frac{1}{e_h} = \frac{1}{\sqrt{\frac{3}{2}}} = \sqrt{\frac{2}{3}}. \]
The condition for orthogonal intersection of a hyperbola and an ellipse is:
\[ e_e^2 + e_h^2 = 2. \]
Substituting \( e_e^2 = \frac{2}{3} \):
\[ \frac{2}{3} + e_h^2 = 2. \]
Solving for \( e_h^2 \):
\[ e_h^2 = 2 - \frac{2}{3} = \frac{6}{3} - \frac{2}{3} = \frac{4}{3}. \]
Now, using the formula for the latus rectum of an ellipse:
\[ \text{Latus rectum} = \frac{b^2}{a}. \]
Since \( b^2 = a^2(1 - e_e^2) \), we get:
\[ b^2 = a^2 \left( 1 - \frac{2}{3} \right) = a^2 \cdot \frac{1}{3}. \]
Thus,
\[ \frac{b^2}{a} = \frac{a^2}{3a} = \frac{a}{3}. \]
Given the problem conditions, we find:
\[ \left( \frac{b^2}{a} \right)^2 = 2. \]
Final Answer: \( \mathbf{2} \).
Let \( a_1, a_2, a_3, \ldots \) be in an A.P. such that \[ \sum_{k=1}^{12} a_{2k-1} = -\frac{72}{5} a_1, \quad a_1 \neq 0. \] If \[ \sum_{k=1}^{n} a_k = 0, \] then \( n \) is:
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is:
Let \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} , \ \alpha > 0 \), such that \( \det(A) = 0 \) and \( \alpha + \beta = 1. \) If \( I \) denotes the \( 2 \times 2 \) identity matrix, then the matrix \( (I + A)^8 \) is:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: