The given hyperbola equation can be rewritten as:
\[ \frac{x^2}{\frac{1}{2}} - \frac{y^2}{\frac{1}{2}} = 1. \]
So, its eccentricity is given by:
\[ e_h = \sqrt{1 + \frac{1}{2}} = \sqrt{\frac{3}{2}}. \]
Since the eccentricity of the ellipse is the reciprocal of that of the hyperbola:
\[ e_e = \frac{1}{e_h} = \frac{1}{\sqrt{\frac{3}{2}}} = \sqrt{\frac{2}{3}}. \]
The condition for orthogonal intersection of a hyperbola and an ellipse is:
\[ e_e^2 + e_h^2 = 2. \]
Substituting \( e_e^2 = \frac{2}{3} \):
\[ \frac{2}{3} + e_h^2 = 2. \]
Solving for \( e_h^2 \):
\[ e_h^2 = 2 - \frac{2}{3} = \frac{6}{3} - \frac{2}{3} = \frac{4}{3}. \]
Now, using the formula for the latus rectum of an ellipse:
\[ \text{Latus rectum} = \frac{b^2}{a}. \]
Since \( b^2 = a^2(1 - e_e^2) \), we get:
\[ b^2 = a^2 \left( 1 - \frac{2}{3} \right) = a^2 \cdot \frac{1}{3}. \]
Thus,
\[ \frac{b^2}{a} = \frac{a^2}{3a} = \frac{a}{3}. \]
Given the problem conditions, we find:
\[ \left( \frac{b^2}{a} \right)^2 = 2. \]
Final Answer: \( \mathbf{2} \).