Let $ A = \begin{bmatrix} \alpha & -1 \\6 & \beta \end{bmatrix},\ \alpha > 0 $, such that $ \det(A) = 0 $ and $ \alpha + \beta = 1 $. If $ I $ denotes the $ 2 \times 2 $ identity matrix, then the matrix $ (1 + A)^5 $ is:
\( \begin{bmatrix} 4 & -1 \\6 & -1 \end{bmatrix} \)
\( \begin{bmatrix} 257 & -64 \\514 & -127 \end{bmatrix} \)
\( \begin{bmatrix} 1025 & -511 \\2024 & -1024 \end{bmatrix} \)
\( \begin{bmatrix} 766 & -255 \\1530 & -509 \end{bmatrix} \)
From \( \det(A) = \alpha \beta + 6 = 0 \), we get \( \alpha \beta = -6 \), and \( \alpha + \beta = 1 \). Solving: \[ \alpha = 3,\quad \beta = -2 \Rightarrow A = \begin{bmatrix} 3 & -1 6 & -2 \end{bmatrix} \] Check powers: \[ A^2 = A \Rightarrow A^n = A,\ \forall n \geq 1 \] Use binomial expansion: \[ (1 + A)^5 = I + 5A + 10A^2 + 10A^3 + 5A^4 + A^5 = I + 31A \] \[ (1 + A)^5 = \begin{bmatrix} 1 & 0 0 & 1 \end{bmatrix} + 31 \cdot \begin{bmatrix} 3 & -1 \\6 & -2 \end{bmatrix} = \begin{bmatrix} 766 & -255 \\1530 & -509 \end{bmatrix} \]
An amount of ₹ 10,000 is put into three investments at the rate of 10%, 12% and 15% per annum. The combined annual income of all three investments is ₹ 1,310, however, the combined annual income of the first and second investments is ₹ 190 short of the income from the third. Use matrix method and find the investment amount in each at the beginning of the year.
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).