Let $ A = \begin{bmatrix} \alpha & -1 \\6 & \beta \end{bmatrix},\ \alpha > 0 $, such that $ \det(A) = 0 $ and $ \alpha + \beta = 1 $. If $ I $ denotes the $ 2 \times 2 $ identity matrix, then the matrix $ (1 + A)^5 $ is:
\( \begin{bmatrix} 4 & -1 \\6 & -1 \end{bmatrix} \)
\( \begin{bmatrix} 257 & -64 \\514 & -127 \end{bmatrix} \)
\( \begin{bmatrix} 1025 & -511 \\2024 & -1024 \end{bmatrix} \)
\( \begin{bmatrix} 766 & -255 \\1530 & -509 \end{bmatrix} \)
From \( \det(A) = \alpha \beta + 6 = 0 \), we get \( \alpha \beta = -6 \), and \( \alpha + \beta = 1 \). Solving: \[ \alpha = 3,\quad \beta = -2 \Rightarrow A = \begin{bmatrix} 3 & -1 6 & -2 \end{bmatrix} \] Check powers: \[ A^2 = A \Rightarrow A^n = A,\ \forall n \geq 1 \] Use binomial expansion: \[ (1 + A)^5 = I + 5A + 10A^2 + 10A^3 + 5A^4 + A^5 = I + 31A \] \[ (1 + A)^5 = \begin{bmatrix} 1 & 0 0 & 1 \end{bmatrix} + 31 \cdot \begin{bmatrix} 3 & -1 \\6 & -2 \end{bmatrix} = \begin{bmatrix} 766 & -255 \\1530 & -509 \end{bmatrix} \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: