Let \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} , \ \alpha > 0 \), such that \( \det(A) = 0 \) and \( \alpha + \beta = 1. \) If \( I \) denotes the \( 2 \times 2 \) identity matrix, then the matrix \( (I + A)^8 \) is:
\( \begin{bmatrix} 4 & -1 \\6 & -1 \end{bmatrix} \)
\( \begin{bmatrix} 257 & -64 \\514 & -127 \end{bmatrix} \)
\( \begin{bmatrix} 1025 & -511 \\2024 & -1024 \end{bmatrix} \)
\( \begin{bmatrix} 766 & -255 \\1530 & -509 \end{bmatrix} \)
This problem requires us to first find the values of \( \alpha \) and \( \beta \) using the given conditions on the matrix \( A \). Once matrix \( A \) is determined, we need to compute the matrix \( (I + A)^8 \).
1. Determinant of a 2x2 Matrix: For a matrix \( M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \), the determinant is \( \det(M) = ad - bc \).
2. System of Equations: Solving for two variables using two given equations.
3. Matrix Exponentiation using Diagonalization: If a matrix \( B \) can be written as \( B = PDP^{-1} \), where \( D \) is a diagonal matrix of eigenvalues and \( P \) is the matrix of corresponding eigenvectors, then \( B^n = PD^n P^{-1} \). The eigenvalues \( \lambda \) are found by solving the characteristic equation \( \det(B - \lambda I) = 0 \).
We are given the matrix \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} \) with the conditions \( \alpha > 0 \), \( \det(A) = 0 \), and \( \alpha + \beta = 1 \).
First, we calculate the determinant of \( A \):
\[ \det(A) = (\alpha)(\beta) - (-1)(6) = \alpha\beta + 6 \]
Using the condition \( \det(A) = 0 \), we get:
\[ \alpha\beta + 6 = 0 \implies \alpha\beta = -6 \]
We now have a system of two equations with two variables:
\[ \alpha + \beta = 1 \] \[ \alpha\beta = -6 \]
We can solve for \( \alpha \) and \( \beta \) by considering a quadratic equation \( t^2 - (\text{sum of roots})t + (\text{product of roots}) = 0 \), where the roots are \( \alpha \) and \( \beta \). This gives:
\[ t^2 - (1)t + (-6) = 0 \implies t^2 - t - 6 = 0 \]
Factoring the quadratic equation, we get:
\[ (t - 3)(t + 2) = 0 \]
The possible values for \( \alpha \) and \( \beta \) are \( 3 \) and \( -2 \). Since we are given that \( \alpha > 0 \), we must have \( \alpha = 3 \) and \( \beta = -2 \).
Now, we can write the matrix \( A \):
\[ A = \begin{bmatrix} 3 & -1 \\ 6 & -2 \end{bmatrix} \]
We need to find \( (I + A)^8 \). Let's first compute the matrix \( B = I + A \):
\[ B = I + A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 3 & -1 \\ 6 & -2 \end{bmatrix} = \begin{bmatrix} 4 & -1 \\ 6 & -1 \end{bmatrix} \]
To compute \( B^8 \), we use diagonalization. First, we find the eigenvalues of \( B \) by solving the characteristic equation \( \det(B - \lambda I) = 0 \):
\[ \det\left(\begin{bmatrix} 4-\lambda & -1 \\ 6 & -1-\lambda \end{bmatrix}\right) = (4-\lambda)(-1-\lambda) - (-1)(6) = 0 \] \[ -4 - 4\lambda + \lambda + \lambda^2 + 6 = 0 \] \[ \lambda^2 - 3\lambda + 2 = 0 \] \[ (\lambda - 1)(\lambda - 2) = 0 \]
The eigenvalues are \( \lambda_1 = 1 \) and \( \lambda_2 = 2 \).
Next, we find the corresponding eigenvectors. For \( \lambda_1 = 1 \):
\[ (B - 1I)\mathbf{v}_1 = \begin{bmatrix} 3 & -1 \\ 6 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies 3x - y = 0 \]
An eigenvector is \( \mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \).
For \( \lambda_2 = 2 \):
\[ (B - 2I)\mathbf{v}_2 = \begin{bmatrix} 2 & -1 \\ 6 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies 2x - y = 0 \]
An eigenvector is \( \mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \).
Now we form the matrices \( P \), \( D \), and \( P^{-1} \):
\[ P = \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \] \[ P^{-1} = \frac{1}{(1)(2) - (1)(3)} \begin{bmatrix} 2 & -1 \\ -3 & 1 \end{bmatrix} = \frac{1}{-1} \begin{bmatrix} 2 & -1 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 3 & -1 \end{bmatrix} \]
We use the formula \( B^8 = PD^8P^{-1} \). First, we calculate \( D^8 \):
\[ D^8 = \begin{bmatrix} 1^8 & 0 \\ 0 & 2^8 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 256 \end{bmatrix} \]
Now, we compute \( B^8 \):
\[ B^8 = \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 256 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 3 & -1 \end{bmatrix} \]
First, multiply the first two matrices:
\[ \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 256 \end{bmatrix} = \begin{bmatrix} 1 & 256 \\ 3 & 512 \end{bmatrix} \]
Now, multiply the result by \( P^{-1} \):
\[ B^8 = \begin{bmatrix} 1 & 256 \\ 3 & 512 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 3 & -1 \end{bmatrix} = \begin{bmatrix} (1)(-2) + (256)(3) & (1)(1) + (256)(-1) \\ (3)(-2) + (512)(3) & (3)(1) + (512)(-1) \end{bmatrix} \] \[ B^8 = \begin{bmatrix} -2 + 768 & 1 - 256 \\ -6 + 1536 & 3 - 512 \end{bmatrix} = \begin{bmatrix} 766 & -255 \\ 1530 & -509 \end{bmatrix} \]
Thus, the matrix \( (I+A)^8 \) is \( \begin{bmatrix} 766 & -255 \\ 1530 & -509 \end{bmatrix} \).
From \( \det(A) = \alpha \beta + 6 = 0 \), we get \( \alpha \beta = -6 \), and \( \alpha + \beta = 1 \). Solving: \[ \alpha = 3,\quad \beta = -2 \Rightarrow A = \begin{bmatrix} 3 & -1 6 & -2 \end{bmatrix} \] Check powers: \[ A^2 = A \Rightarrow A^n = A,\ \forall n \geq 1 \] Use binomial expansion: \[ (1 + A)^5 = I + 5A + 10A^2 + 10A^3 + 5A^4 + A^5 = I + 31A \] \[ (1 + A)^5 = \begin{bmatrix} 1 & 0 0 & 1 \end{bmatrix} + 31 \cdot \begin{bmatrix} 3 & -1 \\6 & -2 \end{bmatrix} = \begin{bmatrix} 766 & -255 \\1530 & -509 \end{bmatrix} \]
Let \[ f(x)=\int \frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2}\,dx \] and $f(1)=\frac14$. Given that 
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below: