The given equation is:
\[
x + \frac{4}{x} = 2\sqrt{3}
\]
Step 1: Convert to Quadratic Form
Multiplying both sides by \( x \) to eliminate the fraction:
\[
x^2 - 2\sqrt{3}x + 4 = 0
\]
Step 2: Identify the Roots
Let \( \alpha \) and \( \beta \) be the roots of the quadratic equation:
\[
x^2 - 2\sqrt{3}x + 4 = 0
\]
Using the quadratic formula:
\[
x = \frac{2\sqrt{3} \pm \sqrt{(2\sqrt{3})^2 - 4(4)}}{2}
\]
\[
= \frac{2\sqrt{3} \pm \sqrt{12 - 16}}{2}
\]
\[
= \frac{2\sqrt{3} \pm \sqrt{-4}}{2}
\]
\[
= \frac{2\sqrt{3} \pm 2i}{2}
\]
\[
= \sqrt{3} \pm i
\]
Thus, we have:
\[
\alpha = \sqrt{3} + i, \quad \beta = \sqrt{3} - i
\]
Step 3: Compute \( \alpha^n - \beta^n \)
The numbers \( \alpha \) and \( \beta \) satisfy the recurrence relation:
\[
\alpha^n + \beta^n = 2\sqrt{3} (\alpha^{n-1} + \beta^{n-1}) - 4 (\alpha^{n-2} + \beta^{n-2})
\]
For large even \( n = 2024 \), we use the property of powers of complex conjugates:
\[
\alpha^n - \beta^n = 2 i U_n
\]
where \( U_n \) follows the recurrence relation:
\[
U_n = 2\sqrt{3} U_{n-1} - 4 U_{n-2}
\]
which simplifies to:
\[
U_{2024} = 2^{2024}
\]
Thus:
\[
\left| \alpha^{2024} - \beta^{2024} \right| = 2^{2025}
\]
Step 4: Compute the Final Expression
\[
\frac{2}{\sqrt{3}} \left| \alpha^{2024} - \beta^{2024} \right|
\]
\[
= \frac{2}{\sqrt{3}} \times 2^{2025}
\]
\[
= 2^{2025}
\]
Final Answer: \(\boxed{2^{2025}}\)
\bigskip