Let tan-1 x ∈(\(-\frac π2\) \(\frac π2\)) for x ∈ R Then the number of real solutions of the equation √1 + cos (2x) = √2 tan -1 (tan x) in the set (- 3π/2, - π/2) ∪ (- π/2, π/2) ∪ (π/2, 3π/2) is equal to
Given: The equation is:
\(\sqrt{1 + \cos(2x)} = \sqrt{2} \tan^{-1}(\tan x)\)
We are tasked with finding the number of real solutions of this equation in the set \( \left( -\frac{3\pi}{2}, -\frac{\pi}{2} \right) \cup \left( -\frac{\pi}{2}, \frac{\pi}{2} \right) \cup \left( \frac{\pi}{2}, \frac{3\pi}{2} \right) \).
First, recall that the domain of \( \tan^{-1} x \) is \( \left( -\frac{\pi}{2}, \frac{\pi}{2} \right) \), so we must consider this constraint for the equation \( \tan^{-1} (\tan x) \).
Next, consider the behavior of both sides of the equation:
By examining the equation over the intervals \( \left( -\frac{3\pi}{2}, -\frac{\pi}{2} \right) \), \( \left( -\frac{\pi}{2}, \frac{\pi}{2} \right) \), and \( \left( \frac{\pi}{2}, \frac{3\pi}{2} \right) \), we can determine the number of solutions.
The number of real solutions of the equation in the given set is 3.

Number of solutions = Number of intersection points = 3.
A relation R is defined in the set N as follows:
R = (x, y) : x = y - 3, y > 3
Then, which of the following is correct?
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
If the domain of the function $ f(x) = \log_7(1 - \log_4(x^2 - 9x + 18)) $ is $ (\alpha, \beta) \cup (\gamma, \delta) $, then $ \alpha + \beta + \gamma + \delta $ is equal to
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 
A function is a relation between a set of inputs and a set of permissible outputs with the property that each input is related to exactly one output. Let A & B be any two non-empty sets, mapping from A to B will be a function only when every element in set A has one end only one image in set B.
The different types of functions are -
One to One Function: When elements of set A have a separate component of set B, we can determine that it is a one-to-one function. Besides, you can also call it injective.
Many to One Function: As the name suggests, here more than two elements in set A are mapped with one element in set B.
Moreover, if it happens that all the elements in set B have pre-images in set A, it is called an onto function or surjective function.
Also, if a function is both one-to-one and onto function, it is known as a bijective. This means, that all the elements of A are mapped with separate elements in B, and A holds a pre-image of elements of B.
Read More: Relations and Functions