To solve this problem, we will examine the conditions for the relation \( R \) defined on set \( A = \{0, 1, 2, 3, 4, 5\} \), where \( (x, y) \in R \) if and only if \(\max\{x, y\} \in \{3, 4\}\).
First, let's identify the pairs where \(\max\{x, y\} = 3\):
Next, identify the pairs where \(\max\{x, y\} = 4\):
Combining these, the complete set of ordered pairs in \( R \), without repetition, is:
The number of elements in \( R \) is \(20\), not 18. Therefore, Statement \( S_1 \) is false.
Next, analyze whether the relation \( R \) is symmetric, reflexive, or transitive:
Based on the above analysis, Statement \( S_2 \), which states that the relation is symmetric but neither reflexive nor transitive, is true.
Therefore, the correct answer is: only \( (S_2) \) is true.
Analysis of Relation \( R \):
1. Definition: \((x, y) \in R\) iff \(\max\{x, y\} \in \{3, 4\}\)
2. Counting elements in \( R \):
- Pairs where \(\max = 3\): \((0,3), (1,3), (2,3), (3,0), (3,1), (3,2), (3,3)\)
- Pairs where \(\max = 4\): \((0,4), (1,4), (2,4), (3,4), (4,0), (4,1), (4,2), (4,3), (4,4)\)
- Total pairs = 7 (for 3) + 9 (for 4) = 16
- Thus, \( (S_1) \) is false (claims 18)
3. Properties of \( R \):
- Symmetric: If \((x,y) \in R\), then \((y,x) \in R\) since \(\max\) is symmetric
- Not Reflexive: \((5,5) \notin R\) since \(\max\{5,5\} = 5 \notin \{3,4\}\)
- Not Transitive: Counterexample: \((0,3) \in R\) and \((3,4) \in R\), but \((0,4) \notin R\)
- Thus, \( (S_2) \) is true
If the domain of the function $ f(x) = \log_7(1 - \log_4(x^2 - 9x + 18)) $ is $ (\alpha, \beta) \cup (\gamma, \delta) $, then $ \alpha + \beta + \gamma + \delta $ is equal to
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Let $ A = \{0, 1, 2, 3, 4, 5, 6\} $ and $ R_1 = \{(x, y): \max(x, y) \in \{3, 4 \}$. Consider the two statements:
Statement 1: Total number of elements in $ R_1 $ is 18.
Statement 2: $ R $ is symmetric but not reflexive and transitive.
Let $ A $ be the set of all functions $ f: \mathbb{Z} \to \mathbb{Z} $ and $ R $ be a relation on $ A $ such that $$ R = \{ (f, g) : f(0) = g(1) \text{ and } f(1) = g(0) \} $$ Then $ R $ is:


For the circuit shown above, the equivalent gate is:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: