Analysis of Relation \( R \):
1. Definition: \((x, y) \in R\) iff \(\max\{x, y\} \in \{3, 4\}\)
2. Counting elements in \( R \):
- Pairs where \(\max = 3\): \((0,3), (1,3), (2,3), (3,0), (3,1), (3,2), (3,3)\)
- Pairs where \(\max = 4\): \((0,4), (1,4), (2,4), (3,4), (4,0), (4,1), (4,2), (4,3), (4,4)\)
- Total pairs = 7 (for 3) + 9 (for 4) = 16
- Thus, \( (S_1) \) is false (claims 18)
3. Properties of \( R \):
- Symmetric: If \((x,y) \in R\), then \((y,x) \in R\) since \(\max\) is symmetric
- Not Reflexive: \((5,5) \notin R\) since \(\max\{5,5\} = 5 \notin \{3,4\}\)
- Not Transitive: Counterexample: \((0,3) \in R\) and \((3,4) \in R\), but \((0,4) \notin R\)
- Thus, \( (S_2) \) is true
Let $ A = \{-2, -1, 0, 1, 2, 3\} $. Let $ R $ be a relation on $ A $ defined by $ (x, y) \in R $ if and only if $ |x| \le |y| $. Let $ m $ be the number of reflexive elements in $ R $ and $ n $ be the minimum number of elements required to be added in $ R $ to make it reflexive and symmetric relations, respectively. Then $ l + m + n $ is equal to
If the domain of the function $ f(x) = \log_7(1 - \log_4(x^2 - 9x + 18)) $ is $ (\alpha, \beta) \cup (\gamma, \delta) $, then $ \alpha + \beta + \gamma + \delta $ is equal to
Let A = $\{-3,-2,-1,0,1,2,3\}$. Let R be a relation on A defined by xRy if and only if $ 0 \le x^2 + 2y \le 4 $. Let $ l $ be the number of elements in R and m be the minimum number of elements required to be added in R to make it a reflexive relation. then $ l + m $ is equal to