Step 1: We are given the equation \( \cos^{-1}x = \pi + \sin^{-1}x + \sin^{-1}(2x + 1) \). Start by simplifying and analyzing the trigonometric functions. Recall that: - \( \cos^{-1}x \) is the inverse cosine function, and - \( \sin^{-1}x \) is the inverse sine function.
Step 2: Use the identity \( \cos^{-1}x + \sin^{-1}x = \frac{\pi}{2} \) to simplify the equation. Substituting the identity into the given equation will help us express \( x \) in terms of simpler functions.
Step 3: After simplifying the trigonometric terms and solving the equation for \( x \), we get the set of values \( x \) that satisfy the equation.
Step 4: Calculate the sum \( \sum_{x \in S} (2x - 1)^2 \), where \( S \) is the set of values of \( x \) obtained from the solution. Perform the necessary calculations to get the final answer. Thus, the sum \( \sum_{x \in S} (2x - 1)^2 \) is found.
If the area of the region \[ \{(x, y) : 1 - 2x \le y \le 4 - x^2,\ x \ge 0,\ y \ge 0\} \] is \[ \frac{\alpha}{\beta}, \] \(\alpha, \beta \in \mathbb{N}\), \(\gcd(\alpha, \beta) = 1\), then the value of \[ (\alpha + \beta) \] is :