Step 1: We are given the equation \( \cos^{-1}x = \pi + \sin^{-1}x + \sin^{-1}(2x + 1) \). Start by simplifying and analyzing the trigonometric functions. Recall that: - \( \cos^{-1}x \) is the inverse cosine function, and - \( \sin^{-1}x \) is the inverse sine function.
Step 2: Use the identity \( \cos^{-1}x + \sin^{-1}x = \frac{\pi}{2} \) to simplify the equation. Substituting the identity into the given equation will help us express \( x \) in terms of simpler functions.
Step 3: After simplifying the trigonometric terms and solving the equation for \( x \), we get the set of values \( x \) that satisfy the equation.
Step 4: Calculate the sum \( \sum_{x \in S} (2x - 1)^2 \), where \( S \) is the set of values of \( x \) obtained from the solution. Perform the necessary calculations to get the final answer. Thus, the sum \( \sum_{x \in S} (2x - 1)^2 \) is found.
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: