Step 1: We are given the equation \( \cos^{-1}x = \pi + \sin^{-1}x + \sin^{-1}(2x + 1) \). Start by simplifying and analyzing the trigonometric functions. Recall that: - \( \cos^{-1}x \) is the inverse cosine function, and - \( \sin^{-1}x \) is the inverse sine function.
Step 2: Use the identity \( \cos^{-1}x + \sin^{-1}x = \frac{\pi}{2} \) to simplify the equation. Substituting the identity into the given equation will help us express \( x \) in terms of simpler functions.
Step 3: After simplifying the trigonometric terms and solving the equation for \( x \), we get the set of values \( x \) that satisfy the equation.
Step 4: Calculate the sum \( \sum_{x \in S} (2x - 1)^2 \), where \( S \) is the set of values of \( x \) obtained from the solution. Perform the necessary calculations to get the final answer. Thus, the sum \( \sum_{x \in S} (2x - 1)^2 \) is found.
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
