To determine the values of \( \alpha \) and \( \beta \), we analyze the discriminant \( D \) of the given quadratic equation:
\[ D = (\sin 2\theta)^2 - 4 \left( 1 - \frac{\sin^2 2\theta}{2} \right) \left( 1 - \frac{3}{4}\sin^2 2\theta \right). \]
Expanding this, we get:
\[ D = (\sin 2\theta)^2 - 4 \left( 1 - \frac{5}{4}\sin^2 2\theta + \frac{3}{8}\sin^4 2\theta \right). \]
Simplifying further,
\[ D = -\frac{3}{2}\sin^4 2\theta + 6\sin^2 2\theta - 4 > 0. \]
This inequality leads us to solve for \( \sin^2 2\theta \):
\[ 3\sin^4 2\theta - 12\sin^2 2\theta + 8 < 0. \]
Solving this inequality, we get:
\[ \sin^2 2\theta = \frac{12 \pm \sqrt{144 - 12.8}}{6} = \frac{12 \pm 4\sqrt{3}}{6} = 2 \pm \frac{2\sqrt{3}}{3}. \]
Thus, we have:
\[ \sin^2 2\theta = 2 \pm \frac{2}{\sqrt{3}}, \quad \text{but } \sin^2 2\theta \in [0, 1]. \]
Therefore,
\[ \alpha = 2 - \frac{2}{\sqrt{3}}, \quad \beta = 1. \]
Now, we calculate \( 3((\alpha - 2)^2 + (\beta - 1)^2) \):
\[ (\alpha - 2)^2 = \frac{4}{3}, \quad (\beta - 1)^2 = 0. \] \[ 3((\alpha - 2)^2 + (\beta - 1)^2) = 3 \times \frac{4}{3} = 4. \]
If \( \theta \in \left[ -\frac{7\pi}{6}, \frac{4\pi}{3} \right] \), then the number of solutions of \[ \sqrt{3} \csc^2 \theta - 2(\sqrt{3} - 1)\csc \theta - 4 = 0 \] is equal to ______.
Given below are two statements:
Statement (I):
 
 are isomeric compounds. 
Statement (II): 
 are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?
