To determine the values of \( \alpha \) and \( \beta \), we analyze the discriminant \( D \) of the given quadratic equation:
\[ D = (\sin 2\theta)^2 - 4 \left( 1 - \frac{\sin^2 2\theta}{2} \right) \left( 1 - \frac{3}{4}\sin^2 2\theta \right). \]
Expanding this, we get:
\[ D = (\sin 2\theta)^2 - 4 \left( 1 - \frac{5}{4}\sin^2 2\theta + \frac{3}{8}\sin^4 2\theta \right). \]
Simplifying further,
\[ D = -\frac{3}{2}\sin^4 2\theta + 6\sin^2 2\theta - 4 > 0. \]
This inequality leads us to solve for \( \sin^2 2\theta \):
\[ 3\sin^4 2\theta - 12\sin^2 2\theta + 8 < 0. \]
Solving this inequality, we get:
\[ \sin^2 2\theta = \frac{12 \pm \sqrt{144 - 12.8}}{6} = \frac{12 \pm 4\sqrt{3}}{6} = 2 \pm \frac{2\sqrt{3}}{3}. \]
Thus, we have:
\[ \sin^2 2\theta = 2 \pm \frac{2}{\sqrt{3}}, \quad \text{but } \sin^2 2\theta \in [0, 1]. \]
Therefore,
\[ \alpha = 2 - \frac{2}{\sqrt{3}}, \quad \beta = 1. \]
Now, we calculate \( 3((\alpha - 2)^2 + (\beta - 1)^2) \):
\[ (\alpha - 2)^2 = \frac{4}{3}, \quad (\beta - 1)^2 = 0. \] \[ 3((\alpha - 2)^2 + (\beta - 1)^2) = 3 \times \frac{4}{3} = 4. \]
The given graph illustrates:
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: