Identify the arithmetic progression: First term \( a = 3 \), common difference \( d = 4 \).
Find the sum of the first \( n \) terms \( S_n \):
\[ S_n = \frac{n}{2} \left( 2a + (n - 1)d \right) = \frac{n}{2} \left(4n + 2\right) = n(2n + 1). \]
Calculate \( \sum_{k=1}^{n} S_k \):
\[ \sum_{k=1}^{n} S_k = \sum_{k=1}^{n} k(2k + 1) = 2 \sum_{k=1}^{n} k^2 + \sum_{k=1}^{n} k. \]
Using formulas:
\[ \sum_{k=1}^{n} k^2 = \frac{n(n + 1)(2n + 1)}{6}, \quad \sum_{k=1}^{n} k = \frac{n(n + 1)}{2}, \]
thus,
\[ \sum_{k=1}^{n} S_k = \frac{n(n + 1)(4n + 5)}{6}. \]
Set up the inequality:
\[ \frac{6}{n(n + 1)} \times \frac{n(n + 1)(4n + 5)}{6} < 42. \]
Simplifying gives:
\[ 4n + 5 < 42 \implies 4n < 37 \implies n < 9.25. \]
Find the largest integer \( n \):
\[ n = 9. \]
Thus, \( n = 9 \).
If \(\sum\)\(_{r=1}^n T_r\) = \(\frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64}\) , then \( \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{T_r} \) is equal to :