Given \( M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \), where \( a, b, c, d \in \{0, 1, 2\} \). The number of elements in the sample space \( S \) is \( 3^4 = 81 \). For \( M \) to be invertible, its determinant must be non-zero: \[ \text{det}(M) = ad - bc \neq 0 \] We compute the valid combinations for which \( ad - bc \neq 0 \). After calculating, we find that there are \( 50 \) valid configurations where the determinant is non-zero. Thus, the probability \( P(A) = \frac{50}{81} \).
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.