The given limit is: \[ \lim_{x \to \infty} \frac{\sin(x^2) (\log_e x)^\alpha \sin \left( \frac{1}{x^2} \right)} {x^{\alpha \beta} (\log_e (1 + x))^\beta}. \]
As \( x \to \infty \), using the small-angle approximation: \[ \sin \left( \frac{1}{x^2} \right) \approx \frac{1}{x^2}. \] Substituting this: \[ \lim_{x \to \infty} \frac{(\log_e x)^\alpha}{x^{\alpha \beta} (\log_e (1 + x))^\beta} \cdot \frac{1}{x^2}. \]
Let \( \log_e x = t \), then: \[ x = e^t. \] This transforms our expression into: \[ \frac{t^\alpha}{e^{t \alpha \beta} t^\beta} \cdot e^{-2t}. \] Simplifying: \[ t^\alpha e^{-t(\alpha \beta + 2)}. \]
For the limit to be **0**, we require: \[ \alpha \beta + 2 > 0 \quad \Rightarrow \quad \alpha \beta > -2. \]
The values of \( (\alpha, \beta) \) that satisfy the condition \( \alpha \beta > -2 \) are: (-1,1) and (1,-1).