The correct answer is (B) : \(\frac{-2\pi}{3}\)
\(cos^{−1}(2x)−2cos^{−1} \sqrt{1−x^{2}} =π\)
\(cos^{−1}(2x)−cos^{−1} (2(1−x^{2})-1) =π\)
\(cos^{−1}(2x)−cos^{−1} (1−2x^{2}) =π\)
\(−cos^{−1} (1−2x^{2}) =π-cos^{−1}(2x)\)
Taking cos both sides we get
\(cos(−cos^{−1} (1−2x^{2})) = cos(π-cos^{−1}(2x))\)
\(1−2x^2=−2x\)
\(2x^{2}−2x−1=0\)
\(\text{On solving, } x= \frac{1− \sqrt3}{2}, \frac{1+ \sqrt3}{2}\)
\(\text{As }x=[\frac{−1}{2}, \frac{1}{2}],x= \frac{1+ \sqrt3}{2} = \text{rejected}\)
\(\text{So }x= \frac{1−\sqrt3}{2} ⇒x^2 −1=− \frac{\sqrt3}{2}\)
\(=2sin^{−1}(x^{2}−1)=2sin^{−1}(\frac{−\sqrt{3}}{2})= \frac{−2π}{3}\)
Rewriting the equation, \[ \cos^{-1} (2x) = \pi + 2\cos^{-1} (\sqrt{1 - x^2}) \] Since the LHS belongs to the interval \([0, \pi]\), the equation must be meaningful. Solving, \[ \cos^{-1} (2x) = \pi, \quad \cos^{-1} (\sqrt{1 - x^2}) = 0 \] which gives \[ x = -\frac{1}{2}, \quad x = 0 \] Now sum over the set: \[ \sum_{x \in S} 2 \sin^{-1} (x^2 - 1) = 0 \]
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.
The inverse trigonometric functions are also called arcus functions or anti trigonometric functions. These are the inverse functions of the trigonometric functions with suitably restricted domains. Specifically, they are the inverse functions of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle’s trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.
Considering the domain and range of the inverse functions, following formulas are important to be noted:
Also, the following formulas are defined for inverse trigonometric functions.
cosec−1(cosec y) = y if -π/2 ≤ y ≤ π/2, y ≠ 0