Direction ratio of normal to \(P_1≡< 2, 1, – 3 >\)
and \(P2≡\begin{vmatrix} \hat i & \hat j & \hat k \\[0.3em] 0 & 1 & -5 \\[0.3em] -1 & -2 & 5 \end{vmatrix}\)
\(P_2=−5\hat i−\hat j(−5)+\hat k(1)\)
i.e.\(< –5, 5, 1 >\)
d.r’s of line of intersection are along vector
\(\begin{vmatrix} \hat i & \hat j & \hat k \\[0.3em] 2 & 1 & -3 \\[0.3em] -5 & 5 & 1 \end{vmatrix}\)\(=\hat i(16)−\hat j(−13)+\hat k(15)\)
i.e.\(< 16, 13, 15 >\)
Therefore, \(α + β = 13 + 15 = 28\)
So, the answer is \(28\).
The velocity-time graph of an object moving along a straight line is shown in the figure. What is the distance covered by the object between \( t = 0 \) to \( t = 4s \)?
A bob of mass \(m\) is suspended at a point \(O\) by a light string of length \(l\) and left to perform vertical motion (circular) as shown in the figure. Initially, by applying horizontal velocity \(v_0\) at the point ‘A’, the string becomes slack when the bob reaches at the point ‘D’. The ratio of the kinetic energy of the bob at the points B and C is:
The shortest perpendicular distance from the point to the given plane is the distance between point and plane. In simple terms, the shortest distance from a point to a plane is the length of the perpendicular parallel to the normal vector dropped from the particular point to the particular plane. Let's see the formula for the distance between point and plane.
Read More: Distance Between Two Points