Direction ratio of normal to \(P_1≡< 2, 1, – 3 >\)
and \(P2≡\begin{vmatrix} \hat i & \hat j & \hat k \\[0.3em] 0 & 1 & -5 \\[0.3em] -1 & -2 & 5 \end{vmatrix}\)
\(P_2=−5\hat i−\hat j(−5)+\hat k(1)\)
i.e.\(< –5, 5, 1 >\)
d.r’s of line of intersection are along vector
\(\begin{vmatrix} \hat i & \hat j & \hat k \\[0.3em] 2 & 1 & -3 \\[0.3em] -5 & 5 & 1 \end{vmatrix}\)\(=\hat i(16)−\hat j(−13)+\hat k(15)\)
i.e.\(< 16, 13, 15 >\)
Therefore, \(α + β = 13 + 15 = 28\)
So, the answer is \(28\).
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

The shortest perpendicular distance from the point to the given plane is the distance between point and plane. In simple terms, the shortest distance from a point to a plane is the length of the perpendicular parallel to the normal vector dropped from the particular point to the particular plane. Let's see the formula for the distance between point and plane.

Read More: Distance Between Two Points