Let p, q and r be three mutually perpendicular vectors of the same magnitude. If a vector x satisfies equation p x {(x - q) x p} + q x {(x - r) x r} + r x {(x - p) x r} = 0, then x is given by
1/2 (p + q - 2r)
1/2 (p + q + r)
1/3 (2p + q - r)
1/3 (2p + q - r)
Correct option (b) 1/2 (p + q + r)
Let p, q and r be three mutually perpendicular vectors of the same magnitude.
If a vector x satisfies equation p x {(x - q) x p} + q x {(x - r) x r} + r x {(x - p) x r} = 0,
then x is given by
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: