Let p, q and r be three mutually perpendicular vectors of the same magnitude. If a vector x satisfies equation p x {(x - q) x p} + q x {(x - r) x r} + r x {(x - p) x r} = 0, then x is given by
1/2 (p + q - 2r)
1/2 (p + q + r)
1/3 (2p + q - r)
1/3 (2p + q - r)
Correct option (b) 1/2 (p + q + r)
Let p, q and r be three mutually perpendicular vectors of the same magnitude.
If a vector x satisfies equation p x {(x - q) x p} + q x {(x - r) x r} + r x {(x - p) x r} = 0,
then x is given by
Let \( \vec{a} \) and \( \vec{b} \) be two co-initial vectors forming adjacent sides of a parallelogram such that:
\[
|\vec{a}| = 10, \quad |\vec{b}| = 2, \quad \vec{a} \cdot \vec{b} = 12
\]
Find the area of the parallelogram.
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: