Let P be a point on the parabola y2 = 4ax, where a > 0. The normal to the parabola at P meets the x -axis at a point Q. The area of the triangle PFQ where F is the focus of the parabola, is 120. If the slope m of the normal and a are both positive integers, then the pair (a, m) is
(2,3)
(1,3)
(2,4)
(3,4)

Equation of normal at P(am2, –2am) is y = mx – 2am – am3
⇒ Area of ∆PFQ = 1/2(a + am2) x 2am = 120
a2m(1 + m2) = 120 Pair (a, m) ≡ (2, 3) satisfies above equation.

Given :
y2 = 4ax
Now, the equation of the normal is :
y = mx - 2am - am3
Point of Contact are as follows :
P (am2, -2am)
Q (2a + am2, 0)
So, the area of the △PFQ :
\(=\frac{1}{2}\times|a+am^2||-2am|\)
120 = a2(1 + m2)m
so, a = 2, m = 3
So, only the option (A) satisfies the equation.
So, the correct option is (A) : (2, 3).
If \( S \) and \( S' \) are the foci of the ellipse \[ \frac{x^2}{18} + \frac{y^2}{9} = 1 \] and \( P \) is a point on the ellipse, then \[ \min (SP \cdot S'P) + \max (SP \cdot S'P) \] is equal to:
Let one focus of the hyperbola \( H : \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1 \) be at \( (\sqrt{10}, 0) \) and the corresponding directrix be \( x = \dfrac{9}{\sqrt{10}} \). If \( e \) and \( l \) respectively are the eccentricity and the length of the latus rectum of \( H \), then \( 9 \left(e^2 + l \right) \) is equal to:
As shown in the figures, a uniform rod $ OO' $ of length $ l $ is hinged at the point $ O $ and held in place vertically between two walls using two massless springs of the same spring constant. The springs are connected at the midpoint and at the top-end $ (O') $ of the rod, as shown in Fig. 1, and the rod is made to oscillate by a small angular displacement. The frequency of oscillation of the rod is $ f_1 $. On the other hand, if both the springs are connected at the midpoint of the rod, as shown in Fig. 2, and the rod is made to oscillate by a small angular displacement, then the frequency of oscillation is $ f_2 $. Ignoring gravity and assuming motion only in the plane of the diagram, the value of $\frac{f_1}{f_2}$ is:
The reaction sequence given below is carried out with 16 moles of X. The yield of the major product in each step is given below the product in parentheses. The amount (in grams) of S produced is ____. 
Use: Atomic mass (in amu): H = 1, C = 12, O = 16, Br = 80
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
When a plane intersects a cone in multiple sections, several types of curves are obtained. These curves can be a circle, an ellipse, a parabola, and a hyperbola. When a plane cuts the cone other than the vertex then the following situations may occur:
Let ‘β’ is the angle made by the plane with the vertical axis of the cone
Read More: Conic Sections