For the hyperbola \(\frac{x^2}{9} - \frac{y^2}{4} = 1\), we have \(a = 3\), \(b = 2\), and \(c = \sqrt{13}\), so the foci are at \(\left(\pm \sqrt{13}, 0\right)\).
Let \(P = (x, y) = \left(3 \sec \theta, 2 \tan \theta\right)\).
Given the area of the triangle with vertices at \(P\) and the foci is \(2\sqrt{13}\), we find that \(\tan \theta = 1\), so \(\theta = \frac{\pi}{4}\).
Substitute \(\theta = \frac{\pi}{4}\):
\[ x = 3\sqrt{2}, \quad y = 2. \]
The square of the distance from \(P\) to the origin is:
\[ x^2 + y^2 = 22. \]
In a two-dimensional coordinate system, it is proposed to determine the size and shape of a triangle ABC in addition to its location and orientation. For this, all the internal angles and sides of the triangle were observed. Further, the planar coordinates of point A and bearing/azimuth of line AB were known. The redundancy (\( r \)) for the above system will be equal to _________ (Answer in integer).