The length of the latus-rectum of the ellipse, whose foci are $(2, 5)$ and $(2, -3)$ and eccentricity is $\frac{4}{5}$, is
Given foci of an ellipse at \((2,5)\) and \((2,-3)\) and eccentricity \(e=\frac{4}{5}\).
For an ellipse with semi-major axis \(a\), semi-minor axis \(b\), and focal distance \(c\), we have \[ e=\frac{c}{a},\qquad b^2=a^2-c^2, \] and the length of the latus-rectum is \[ \text{LR}=\frac{2b^2}{a}. \]
Step 1: Find \(c\).
The center is the midpoint of the foci: \((2,1)\). The distance from the center to a focus is \[ c=\sqrt{(2-2)^2+(5-1)^2}=4. \]
Step 2: Use eccentricity to get \(a\).
\[ e=\frac{c}{a}=\frac{4}{a}=\frac{4}{5}\ \Rightarrow\ a=5. \]
Step 3: Compute \(b^2\).
\[ b^2=a^2-c^2=25-16=9. \]
Step 4: Length of latus-rectum.
\[ \text{LR}=\frac{2b^2}{a}=\frac{2\cdot 9}{5}=\frac{18}{5}. \]
Length of latus-rectum = \(\dfrac{18}{5}\).
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
Which of the following best represents the temperature versus heat supplied graph for water, in the range of \(-20^\circ\text{C}\) to \(120^\circ\text{C}\)? 