The problem requires us to first find the coordinates of point \(P(\alpha, \beta, \gamma)\), which is the image of point \(Q(3, -3, 1)\) with respect to the given line. Then, we need to calculate the area, \(\lambda\), of the triangle formed by points \(P\), \(Q\), and \(R(2, 5, -1)\). Finally, using the given relation \(\lambda^2 = 14K\), we must find the value of \(K\).
The solution involves the following concepts from 3D geometry:
Step 1: Find the foot of the perpendicular from point \(Q\) to the line.
The given line is \(L: \frac{x}{1} = \frac{y-3}{1} = \frac{z-1}{-1} = t\). Any point on this line can be represented as \(M(t, 3+t, 1-t)\). Let \(M\) be the foot of the perpendicular from \(Q(3, -3, 1)\) to the line \(L\).
The direction ratios of the line segment \(QM\) are:
\[ \langle (t-3), (3+t - (-3)), (1-t - 1) \rangle = \langle t-3, t+6, -t \rangle \]The direction ratios of the line \(L\) are \(\langle 1, 1, -1 \rangle\).
Since \(QM\) is perpendicular to \(L\), the dot product of their direction ratios is zero:
\[ (1)(t-3) + (1)(t+6) + (-1)(-t) = 0 \] \[ t - 3 + t + 6 + t = 0 \] \[ 3t + 3 = 0 \implies t = -1 \]Substituting \(t = -1\) into the coordinates of \(M\), we get the foot of the perpendicular:
\[ M = (-1, 3-1, 1-(-1)) = (-1, 2, 2) \]Step 2: Find the coordinates of the image \(P(\alpha, \beta, \gamma)\).
The point \(M\) is the midpoint of the segment \(PQ\). Using the midpoint formula:
\[ M\left(\frac{\alpha+3}{2}, \frac{\beta-3}{2}, \frac{\gamma+1}{2}\right) = (-1, 2, 2) \]Equating the coordinates:
\[ \frac{\alpha+3}{2} = -1 \implies \alpha+3 = -2 \implies \alpha = -5 \] \[ \frac{\beta-3}{2} = 2 \implies \beta-3 = 4 \implies \beta = 7 \] \[ \frac{\gamma+1}{2} = 2 \implies \gamma+1 = 4 \implies \gamma = 3 \]So, the image point is \(P(-5, 7, 3)\).
Step 3: Calculate the area of triangle \(PQR\).
The vertices are \(P(-5, 7, 3)\), \(Q(3, -3, 1)\), and \(R(2, 5, -1)\). Let's find the vectors \(\vec{QP}\) and \(\vec{QR}\):
\[ \vec{QP} = P - Q = \langle -5-3, 7-(-3), 3-1 \rangle = \langle -8, 10, 2 \rangle \] \[ \vec{QR} = R - Q = \langle 2-3, 5-(-3), -1-1 \rangle = \langle -1, 8, -2 \rangle \]The area of \(\triangle PQR\) is \(\lambda = \frac{1}{2} |\vec{QP} \times \vec{QR}|\).
Step 4: Compute the cross product \(\vec{QP} \times \vec{QR}\).
\[ \vec{QP} \times \vec{QR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -8 & 10 & 2 \\ -1 & 8 & -2 \end{vmatrix} \] \[ = \mathbf{i}((10)(-2) - (2)(8)) - \mathbf{j}((-8)(-2) - (2)(-1)) + \mathbf{k}((-8)(8) - (10)(-1)) \] \[ = \mathbf{i}(-20 - 16) - \mathbf{j}(16 + 2) + \mathbf{k}(-64 + 10) \] \[ = -36\mathbf{i} - 18\mathbf{j} - 54\mathbf{k} \]Step 5: Find the magnitude of the cross product and the area \(\lambda\).
\[ |\vec{QP} \times \vec{QR}| = \sqrt{(-36)^2 + (-18)^2 + (-54)^2} \] \[ = \sqrt{1296 + 324 + 2916} = \sqrt{4536} \]We can simplify this by factoring out \(18^2 = 324\):
\[ \sqrt{324 \cdot 4 + 324 \cdot 1 + 324 \cdot 9} = \sqrt{324(4+1+9)} = \sqrt{324 \cdot 14} = 18\sqrt{14} \]The area is:
\[ \lambda = \frac{1}{2} |\vec{QP} \times \vec{QR}| = \frac{1}{2} (18\sqrt{14}) = 9\sqrt{14} \]Step 6: Calculate the value of \(K\).
We are given the relation \(\lambda^2 = 14K\). Substituting the value of \(\lambda\):
\[ (9\sqrt{14})^2 = 14K \] \[ 81 \times 14 = 14K \] \[ K = 81 \]Thus, the value of \(K\) is 81.
The coordinates of \( Q \) are \( (3, -3, 1) \) and \( R \) is at \( (2, 5, -1) \).
Step 1: Calculating \( RQ \):
\[ RQ = \sqrt{(2 - 3)^2 + (5 + 3)^2 + (-1 - 1)^2} = \sqrt{1 + 64 + 4} = \sqrt{69} \]
Step 2: Representing \( \vec{RQ} \):
\[ \vec{RQ} = -\hat{i} + 8\hat{j} - 2\hat{k} \]
Step 3: Representing \( \vec{RS} \):
\[ \vec{RS} = \hat{i} + \hat{j} - \hat{k} \]
Step 4: Finding cosine of the angle \( \theta \) between vectors \( \vec{RQ} \) and \( \vec{RS} \):
\[ \cos \theta = \frac{\vec{RQ} \times \vec{RS}}{|\vec{RQ}||\vec{RS}|} \]
\[ = \frac{(-1 \times 1) + (8 \times 1) + (-2 \times -1)}{\sqrt{69} \times \sqrt{3}} = \frac{-1 + 8 + 2}{\sqrt{69} \times \sqrt{3}} = \frac{9}{3\sqrt{23}} \]
Step 5: Using sine of the angle:
\[ \sin \theta = \sqrt{1 - \cos^2 \theta} = \frac{\sqrt{23}}{\sqrt{69}} \]
Step 6: Finding area of triangle \( PQR \):
\[ \text{Area} = \frac{1}{2} \times |\vec{RQ} \times \vec{RS}| \times \sin \theta = \frac{1}{2} \times \sqrt{69} \times \sqrt{3} \times \frac{\sqrt{23}}{\sqrt{69}} = \frac{\sqrt{3} \times \sqrt{23}}{2} \]
Step 7: Given \( \lambda^2 = 14K \):
\[ \lambda^2 = 81.14 = 14K \implies K = 81 \]
In the adjoining figure, \(PQ \parallel XY \parallel BC\), \(AP=2\ \text{cm}, PX=1.5\ \text{cm}, BX=4\ \text{cm}\). If \(QY=0.75\ \text{cm}\), then \(AQ+CY =\)
In the adjoining figure, \( \triangle CAB \) is a right triangle, right angled at A and \( AD \perp BC \). Prove that \( \triangle ADB \sim \triangle CDA \). Further, if \( BC = 10 \text{ cm} \) and \( CD = 2 \text{ cm} \), find the length of } \( AD \).
If a line drawn parallel to one side of a triangle intersecting the other two sides in distinct points divides the two sides in the same ratio, then it is parallel to the third side. State and prove the converse of the above statement.

Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
