The problem requires us to first find the coordinates of point \(P(\alpha, \beta, \gamma)\), which is the image of point \(Q(3, -3, 1)\) with respect to the given line. Then, we need to calculate the area, \(\lambda\), of the triangle formed by points \(P\), \(Q\), and \(R(2, 5, -1)\). Finally, using the given relation \(\lambda^2 = 14K\), we must find the value of \(K\).
The solution involves the following concepts from 3D geometry:
Step 1: Find the foot of the perpendicular from point \(Q\) to the line.
The given line is \(L: \frac{x}{1} = \frac{y-3}{1} = \frac{z-1}{-1} = t\). Any point on this line can be represented as \(M(t, 3+t, 1-t)\). Let \(M\) be the foot of the perpendicular from \(Q(3, -3, 1)\) to the line \(L\).
The direction ratios of the line segment \(QM\) are:
\[ \langle (t-3), (3+t - (-3)), (1-t - 1) \rangle = \langle t-3, t+6, -t \rangle \]The direction ratios of the line \(L\) are \(\langle 1, 1, -1 \rangle\).
Since \(QM\) is perpendicular to \(L\), the dot product of their direction ratios is zero:
\[ (1)(t-3) + (1)(t+6) + (-1)(-t) = 0 \] \[ t - 3 + t + 6 + t = 0 \] \[ 3t + 3 = 0 \implies t = -1 \]Substituting \(t = -1\) into the coordinates of \(M\), we get the foot of the perpendicular:
\[ M = (-1, 3-1, 1-(-1)) = (-1, 2, 2) \]Step 2: Find the coordinates of the image \(P(\alpha, \beta, \gamma)\).
The point \(M\) is the midpoint of the segment \(PQ\). Using the midpoint formula:
\[ M\left(\frac{\alpha+3}{2}, \frac{\beta-3}{2}, \frac{\gamma+1}{2}\right) = (-1, 2, 2) \]Equating the coordinates:
\[ \frac{\alpha+3}{2} = -1 \implies \alpha+3 = -2 \implies \alpha = -5 \] \[ \frac{\beta-3}{2} = 2 \implies \beta-3 = 4 \implies \beta = 7 \] \[ \frac{\gamma+1}{2} = 2 \implies \gamma+1 = 4 \implies \gamma = 3 \]So, the image point is \(P(-5, 7, 3)\).
Step 3: Calculate the area of triangle \(PQR\).
The vertices are \(P(-5, 7, 3)\), \(Q(3, -3, 1)\), and \(R(2, 5, -1)\). Let's find the vectors \(\vec{QP}\) and \(\vec{QR}\):
\[ \vec{QP} = P - Q = \langle -5-3, 7-(-3), 3-1 \rangle = \langle -8, 10, 2 \rangle \] \[ \vec{QR} = R - Q = \langle 2-3, 5-(-3), -1-1 \rangle = \langle -1, 8, -2 \rangle \]The area of \(\triangle PQR\) is \(\lambda = \frac{1}{2} |\vec{QP} \times \vec{QR}|\).
Step 4: Compute the cross product \(\vec{QP} \times \vec{QR}\).
\[ \vec{QP} \times \vec{QR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -8 & 10 & 2 \\ -1 & 8 & -2 \end{vmatrix} \] \[ = \mathbf{i}((10)(-2) - (2)(8)) - \mathbf{j}((-8)(-2) - (2)(-1)) + \mathbf{k}((-8)(8) - (10)(-1)) \] \[ = \mathbf{i}(-20 - 16) - \mathbf{j}(16 + 2) + \mathbf{k}(-64 + 10) \] \[ = -36\mathbf{i} - 18\mathbf{j} - 54\mathbf{k} \]Step 5: Find the magnitude of the cross product and the area \(\lambda\).
\[ |\vec{QP} \times \vec{QR}| = \sqrt{(-36)^2 + (-18)^2 + (-54)^2} \] \[ = \sqrt{1296 + 324 + 2916} = \sqrt{4536} \]We can simplify this by factoring out \(18^2 = 324\):
\[ \sqrt{324 \cdot 4 + 324 \cdot 1 + 324 \cdot 9} = \sqrt{324(4+1+9)} = \sqrt{324 \cdot 14} = 18\sqrt{14} \]The area is:
\[ \lambda = \frac{1}{2} |\vec{QP} \times \vec{QR}| = \frac{1}{2} (18\sqrt{14}) = 9\sqrt{14} \]Step 6: Calculate the value of \(K\).
We are given the relation \(\lambda^2 = 14K\). Substituting the value of \(\lambda\):
\[ (9\sqrt{14})^2 = 14K \] \[ 81 \times 14 = 14K \] \[ K = 81 \]Thus, the value of \(K\) is 81.
The coordinates of \( Q \) are \( (3, -3, 1) \) and \( R \) is at \( (2, 5, -1) \).
Step 1: Calculating \( RQ \):
\[ RQ = \sqrt{(2 - 3)^2 + (5 + 3)^2 + (-1 - 1)^2} = \sqrt{1 + 64 + 4} = \sqrt{69} \]
Step 2: Representing \( \vec{RQ} \):
\[ \vec{RQ} = -\hat{i} + 8\hat{j} - 2\hat{k} \]
Step 3: Representing \( \vec{RS} \):
\[ \vec{RS} = \hat{i} + \hat{j} - \hat{k} \]
Step 4: Finding cosine of the angle \( \theta \) between vectors \( \vec{RQ} \) and \( \vec{RS} \):
\[ \cos \theta = \frac{\vec{RQ} \times \vec{RS}}{|\vec{RQ}||\vec{RS}|} \]
\[ = \frac{(-1 \times 1) + (8 \times 1) + (-2 \times -1)}{\sqrt{69} \times \sqrt{3}} = \frac{-1 + 8 + 2}{\sqrt{69} \times \sqrt{3}} = \frac{9}{3\sqrt{23}} \]
Step 5: Using sine of the angle:
\[ \sin \theta = \sqrt{1 - \cos^2 \theta} = \frac{\sqrt{23}}{\sqrt{69}} \]
Step 6: Finding area of triangle \( PQR \):
\[ \text{Area} = \frac{1}{2} \times |\vec{RQ} \times \vec{RS}| \times \sin \theta = \frac{1}{2} \times \sqrt{69} \times \sqrt{3} \times \frac{\sqrt{23}}{\sqrt{69}} = \frac{\sqrt{3} \times \sqrt{23}}{2} \]
Step 7: Given \( \lambda^2 = 14K \):
\[ \lambda^2 = 81.14 = 14K \implies K = 81 \]
In the adjoining figure, \( AP = 1 \, \text{cm}, \ BP = 2 \, \text{cm}, \ AQ = 1.5 \, \text{cm}, \ AC = 4.5 \, \text{cm} \) Prove that \( \triangle APQ \sim \triangle ABC \).
Hence, find the length of \( PQ \), if \( BC = 3.6 \, \text{cm} \).
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 