The standard hyperbola is \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) with \( a = 3 \), \( b = 2 \).
So a point on it in parametric form is: \( (x, y) = (3\sec\theta, 2\tan\theta) \).
The equation of the normal to the hyperbola at \( (a\sec\theta, b\tan\theta) \) is:
\[ ax\sec\theta + by\tan\theta = a^2 + b^2 \]
Plugging in \( a = 3 \), \( b = 2 \):
Normal at \( P \): \[ 3x\sec\theta + 2y\tan\theta = 13 \tag{1} \] Normal at \( Q \): \[ 3x\sec\phi + 2y\tan\phi = 13 \tag{2} \]
We are told: \( \theta + \phi = \frac{\pi}{2} \).
Use identities:
Substitute into (2): \[ 3x\csc\theta + 2y\cot\theta = 13 \tag{2'} \]
Now subtract equations (1) and (2') after multiplying:
\[ \text{From (1): } 3x\sec\theta\csc\theta + 2y\tan\theta\csc\theta = 13\csc\theta \] \[ \text{From (2'): } 3x\csc\theta\sec\theta + 2y\cot\theta\sec\theta = 13\sec\theta \]
Now subtract: \[ 2y\left(\tan\theta\csc\theta - \cot\theta\sec\theta\right) = 13\left(\csc\theta - \sec\theta\right) \]
Recall: \[ \tan\theta\csc\theta = \frac{1}{\cos\theta}, \quad \cot\theta\sec\theta = \frac{1}{\sin\theta} \]
So: \[ 2y\left(\frac{1}{\cos\theta} - \frac{1}{\sin\theta}\right) = 13\left(\frac{1}{\sin\theta} - \frac{1}{\cos\theta}\right) \]
Bring all terms to one side: \[ 2y = -13 \Rightarrow y = -\frac{13}{2} \]
\[ \boxed{-\frac{13}{2}} \]