Match the following List-I with List-II and choose the correct option: List-I (Compounds) | List-II (Shape and Hybridisation) (A) PF\(_{3}\) (I) Tetrahedral and sp\(^3\) (B) SF\(_{6}\) (III) Octahedral and sp\(^3\)d\(^2\) (C) Ni(CO)\(_{4}\) (I) Tetrahedral and sp\(^3\) (D) [PtCl\(_{4}\)]\(^{2-}\) (II) Square planar and dsp\(^2\)
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to:
A function is a relation between a set of inputs and a set of permissible outputs with the property that each input is related to exactly one output. Let A & B be any two non-empty sets, mapping from A to B will be a function only when every element in set A has one end only one image in set B.
The different types of functions are -
One to One Function: When elements of set A have a separate component of set B, we can determine that it is a one-to-one function. Besides, you can also call it injective.
Many to One Function: As the name suggests, here more than two elements in set A are mapped with one element in set B.
Moreover, if it happens that all the elements in set B have pre-images in set A, it is called an onto function or surjective function.
Also, if a function is both one-to-one and onto function, it is known as a bijective. This means, that all the elements of A are mapped with separate elements in B, and A holds a pre-image of elements of B.
Read More: Relations and Functions