The correct answer is:
\(\sum \left(\frac{n^3}{n!} + \frac{2n - 1}{(2n)!} \right) = \sum \frac{n^2}{(n - 1)! }+ \sum\frac{1}{(2n - 1)!} - \sum\frac{1}{(2n)!}\rightarrow(1)\)
Consider:
\(∑ \frac{n^2 }{(n - 1)!} = ∑\frac{(n - 1)(n + 1)+1}{(n - 1)! }\)
\(= ∑ \frac{1}{(n - 3)!} + 3∑\frac{1}{(n - 2)!} + ∑\frac{1}{(n - 1)!} = e + 3e + e = 5e\)
\(e+\frac{1}{e}=(1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+.....)+(1-\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+.....)\)
\(e+\frac{1}{e}=2(1+\frac{1}{2!}+\frac{1}{4!}+\frac{1}{6!}+.....)=2\sum\frac{1}{(2n)!}\)
\(e-\frac{1}{e}=2(\frac{1}{1!}+\frac{1}{3!}+\frac{1}{5!}+.....)=2\sum\frac{1}{(2n-1)!}\)
Using in (1):
\(⇒5e+\frac{e-\frac{1}{e}}{2}-\frac{e+\frac{1}{e}}{2}\)
\(5e-\frac{1}{2e}-\frac{1}{2e}=5e-\frac{1}{e}\)
\(=ae+\frac{b}{e}+c\)
\(a^2-b+c=25+1=26\)
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.
There are distinct applications of integrals, out of which some are as follows:
In Maths
Integrals are used to find:
In Physics
Integrals are used to find: