The correct answer is:
\(\sum \left(\frac{n^3}{n!} + \frac{2n - 1}{(2n)!} \right) = \sum \frac{n^2}{(n - 1)! }+ \sum\frac{1}{(2n - 1)!} - \sum\frac{1}{(2n)!}\rightarrow(1)\)
Consider:
\(∑ \frac{n^2 }{(n - 1)!} = ∑\frac{(n - 1)(n + 1)+1}{(n - 1)! }\)
\(= ∑ \frac{1}{(n - 3)!} + 3∑\frac{1}{(n - 2)!} + ∑\frac{1}{(n - 1)!} = e + 3e + e = 5e\)
\(e+\frac{1}{e}=(1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+.....)+(1-\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+.....)\)
\(e+\frac{1}{e}=2(1+\frac{1}{2!}+\frac{1}{4!}+\frac{1}{6!}+.....)=2\sum\frac{1}{(2n)!}\)
\(e-\frac{1}{e}=2(\frac{1}{1!}+\frac{1}{3!}+\frac{1}{5!}+.....)=2\sum\frac{1}{(2n-1)!}\)
Using in (1):
\(⇒5e+\frac{e-\frac{1}{e}}{2}-\frac{e+\frac{1}{e}}{2}\)
\(5e-\frac{1}{2e}-\frac{1}{2e}=5e-\frac{1}{e}\)
\(=ae+\frac{b}{e}+c\)
\(a^2-b+c=25+1=26\)
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
There are distinct applications of integrals, out of which some are as follows:
In Maths
Integrals are used to find:
In Physics
Integrals are used to find: