The correct answer is:
\(\sum \left(\frac{n^3}{n!} + \frac{2n - 1}{(2n)!} \right) = \sum \frac{n^2}{(n - 1)! }+ \sum\frac{1}{(2n - 1)!} - \sum\frac{1}{(2n)!}\rightarrow(1)\)
Consider:
\(∑ \frac{n^2 }{(n - 1)!} = ∑\frac{(n - 1)(n + 1)+1}{(n - 1)! }\)
\(= ∑ \frac{1}{(n - 3)!} + 3∑\frac{1}{(n - 2)!} + ∑\frac{1}{(n - 1)!} = e + 3e + e = 5e\)
\(e+\frac{1}{e}=(1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+.....)+(1-\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+.....)\)
\(e+\frac{1}{e}=2(1+\frac{1}{2!}+\frac{1}{4!}+\frac{1}{6!}+.....)=2\sum\frac{1}{(2n)!}\)
\(e-\frac{1}{e}=2(\frac{1}{1!}+\frac{1}{3!}+\frac{1}{5!}+.....)=2\sum\frac{1}{(2n-1)!}\)
Using in (1):
\(⇒5e+\frac{e-\frac{1}{e}}{2}-\frac{e+\frac{1}{e}}{2}\)
\(5e-\frac{1}{2e}-\frac{1}{2e}=5e-\frac{1}{e}\)
\(=ae+\frac{b}{e}+c\)
\(a^2-b+c=25+1=26\)
If 5f(x) + 4f (\(\frac{1}{x}\)) = \(\frac{1}{x}\)+ 3, then \(18\int_{1}^{2}\) f(x)dx is:
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32
There are distinct applications of integrals, out of which some are as follows:
In Maths
Integrals are used to find:
In Physics
Integrals are used to find: