Let \[ M = \begin{pmatrix} 1 & -1 & 1 \\ 1 & -1 & -1 \end{pmatrix}. \] If \[ V = \{ (x, y, 0) \in \mathbb{R}^3 : M \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}, \] \[ W = \{ (x, y, z) \in \mathbb{R}^3 : M \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}, \] then
the dimension of \( W \) equals 2
the dimension of \( V \) equals 1
Given: $M = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -1 & -1 \end{bmatrix}$
Finding $V$: Points $(x,y,0)$ where $M\begin{bmatrix} x \\ y \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
$$M\begin{bmatrix} x \\ y \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -1 & -1 \end{bmatrix}\begin{bmatrix} x \\ y \\ 0 \end{bmatrix} = \begin{bmatrix} x - y \\ x - y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
This gives: $x - y = 0$, so $x = y$.
Therefore: $V = {(x, x, 0) : x \in \mathbb{R}} = {x(1, 1, 0) : x \in \mathbb{R}}$
Dimension of $V$ = 1
Finding $W$: Points $(x,y,z)$ where $M\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
$$M\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x - y + z \\ x - y - z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
From the equations:
Adding: $2(x - y) = 0 \Rightarrow x = y$
Subtracting: $2z = 0 \Rightarrow z = 0$
Therefore: $W = {(x, x, 0) : x \in \mathbb{R}} = V$
Dimension of $W$ = 1
Verify options:
(A) dim($V$) = 2? FALSE
(B) dim($W$) = 2? FALSE
(C) dim($V$) = 1? TRUE
(D) $V \cap W = {(0,0,0)}$? FALSE (since $V = W$)
Answer: (C)