Step 1: Begin by analyzing the function \( f(x) \), and separate the terms to find the maximum and minimum values of the given expression. Use the periodicity of trigonometric functions to simplify and solve.
Step 2: To find the maximum and minimum values, take the derivative of \( f(x) \) and solve for the critical points. Analyze the behavior of \( f(x) \) at these points and the boundaries of the domain.
Step 3: After finding the maximum and minimum values \( M \) and \( m \), calculate \( M^4 - m^4 \). Thus, the correct answer is (4).
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 