Step 1: Begin by analyzing the function \( f(x) \), and separate the terms to find the maximum and minimum values of the given expression. Use the periodicity of trigonometric functions to simplify and solve.
Step 2: To find the maximum and minimum values, take the derivative of \( f(x) \) and solve for the critical points. Analyze the behavior of \( f(x) \) at these points and the boundaries of the domain.
Step 3: After finding the maximum and minimum values \( M \) and \( m \), calculate \( M^4 - m^4 \). Thus, the correct answer is (4).

If $ \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p $, then $ 96 \log_e p $ is equal to _______
The integral $ \int_{0}^{\pi} \frac{8x dx}{4 \cos^2 x + \sin^2 x} $ is equal to
Let $ f : \mathbb{R} \rightarrow \mathbb{R} $ be a function defined by $ f(x) = ||x+2| - 2|x|| $. If m is the number of points of local maxima of f and n is the number of points of local minima of f, then m + n is
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 