Identify the direction vectors: \(L_1: \vec{d_1} = \hat{i} - \hat{j} + 2\hat{k}\); \(L_2: \vec{d_2} = 3\hat{i} + \hat{j} + p\hat{k}\); \(L_3: \vec{d_3} = \hat{i} + m\hat{j} - \hat{k}\)
Since \(L_1\) is perpendicular to \(L_2\), we have:
\(\vec{d_1} \times \vec{d_2} = 0\).
\((1)(3) + (-1)(1) + (2)(p) = 0 \Rightarrow 2 + 2p = 0 \Rightarrow p = -1.\)
Since \(L_3\) is perpendicular to both \(L_1\) and \(L_2\): For \(L_3\) perpendicular to \(L_1\):
\(\vec{d_3} \times \vec{d_1} = 0\).
\((1)(1) + (m)(-1) + (-1)(2) = 0 \Rightarrow -m = 1 \Rightarrow m = -1.\)
Substitute \(\delta = -1\) in \(\vec{r} = \delta(\hat{i} - \hat{j} - \hat{k})\) to find the point:
\((-1, 7, 4)\).
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: