Identify the direction vectors: \(L_1: \vec{d_1} = \hat{i} - \hat{j} + 2\hat{k}\); \(L_2: \vec{d_2} = 3\hat{i} + \hat{j} + p\hat{k}\); \(L_3: \vec{d_3} = \hat{i} + m\hat{j} - \hat{k}\)
Since \(L_1\) is perpendicular to \(L_2\), we have:
\(\vec{d_1} \times \vec{d_2} = 0\).
\((1)(3) + (-1)(1) + (2)(p) = 0 \Rightarrow 2 + 2p = 0 \Rightarrow p = -1.\)
Since \(L_3\) is perpendicular to both \(L_1\) and \(L_2\): For \(L_3\) perpendicular to \(L_1\):
\(\vec{d_3} \times \vec{d_1} = 0\).
\((1)(1) + (m)(-1) + (-1)(2) = 0 \Rightarrow -m = 1 \Rightarrow m = -1.\)
Substitute \(\delta = -1\) in \(\vec{r} = \delta(\hat{i} - \hat{j} - \hat{k})\) to find the point:
\((-1, 7, 4)\).
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).