The given problem involves finding the shortest distance between two skew lines \( L_1 \) and \( L_2 \).
The parametric equations of the lines are as follows:
For \( L_1 \):
\[
\frac{x - 1}{3} = \frac{y}{4} = \frac{z}{5} \implies x = 3t + 1, \, y = 4t, \, z = 5t \quad \text{(for some parameter } t)
\]
For \( L_2 \):
\[
\frac{x - p}{2} = \frac{y}{3} = \frac{z}{4} \implies x = 2s + p, \, y = 3s, \, z = 4s \quad \text{(for some parameter } s)
\]
The shortest distance between two skew lines is given by the formula:
\[
d = \frac{|(\vec{b_1} - \vec{b_2}) \cdot (\vec{a_1} \times \vec{a_2})|}{|\vec{a_1} \times \vec{a_2}|}
\]
where \( \vec{b_1} \) and \( \vec{b_2} \) are the position vectors of any two points on \( L_1 \) and \( L_2 \), and \( \vec{a_1} \) and \( \vec{a_2} \) are direction vectors of \( L_1 \) and \( L_2 \).
From the parametric equations:
- The direction vector of \( L_1 \) is \( \vec{a_1} = \langle 3, 4, 5 \rangle \)
- The direction vector of \( L_2 \) is \( \vec{a_2} = \langle 2, 3, 4 \rangle \)
The position vectors are:
- For \( L_1 \), \( \vec{b_1} = \langle 1, 0, 0 \rangle \)
- For \( L_2 \), \( \vec{b_2} = \langle p, 0, 0 \rangle \)
Now, calculate the cross product \( \vec{a_1} \times \vec{a_2} \):
\[
\vec{a_1} \times \vec{a_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}
3 & 4 & 5
2 & 3 & 4 \end{vmatrix} = \langle -1, 2, -1 \rangle
\]
Next, calculate the dot product \( (\vec{b_1} - \vec{b_2}) \cdot (\vec{a_1} \times \vec{a_2}) \):
\[
(\vec{b_1} - \vec{b_2}) = \langle 1 - p, 0, 0 \rangle
\]
\[
(\vec{b_1} - \vec{b_2}) \cdot (\vec{a_1} \times \vec{a_2}) = \langle 1 - p, 0, 0 \rangle \cdot \langle -1, 2, -1 \rangle = -(1 - p)
\]
The magnitude of \( \vec{a_1} \times \vec{a_2} \) is:
\[
|\vec{a_1} \times \vec{a_2}| = \sqrt{(-1)^2 + 2^2 + (-1)^2} = \sqrt{6}
\]
Now, substitute the known values into the formula for the shortest distance:
\[
d = \frac{|-(1 - p)|}{\sqrt{6}} = \frac{|p - 1|}{\sqrt{6}}
\]
We are given that the shortest distance is \( \frac{1}{\sqrt{6}} \):
\[
\frac{|p - 1|}{\sqrt{6}} = \frac{1}{\sqrt{6}} \implies |p - 1| = 1
\]
Solving this:
\[
p - 1 = 1 \quad \text{or} \quad p - 1 = -1
\]
\[
p = 2 \quad \text{or} \quad p = 0
\]
Thus, the possible value of \( p \) is \( 2 \).
Therefore, the correct answer is (2) 2.