\(K_1>\frac{K_2}{3}\)
\(K_1< \frac{K_2}{3}\)
\(K_1=\frac{K_2}{3}\)
\(K_2=\frac{K_1}{3}\)
The correct answer is (B) : \(K_1< \frac{K_2}{3}\)
\(K_1=\frac{hc}{λ_1}−\phi=\frac{hc}{3λ_2}−\phi….(i)\)
and
\(K_2=\frac{hc}{λ_2}−\phi….(ii)\)
from (i) and (ii) we can say
3K1 = K2 – 2φ
\(K_1<\frac{K_2}{3}\)
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
When light shines on a metal, electrons can be ejected from the surface of the metal in a phenomenon known as the photoelectric effect. This process is also often referred to as photoemission, and the electrons that are ejected from the metal are called photoelectrons.
According to Einstein’s explanation of the photoelectric effect :
The energy of photon = energy needed to remove an electron + kinetic energy of the emitted electron
i.e. hν = W + E
Where,