We start with the given integral:
\( \int \frac{2 - \tan x}{3 + \tan x} \, dx = \int \frac{2 \cos x - \sin x}{3 \cos x + \sin x} \, dx \)
Now, express the numerator as a linear combination of the derivatives of the denominator terms:
\( 2 \cos x - \sin x = A(3 \cos x + \sin x) + B(\cos x - 3 \sin x) \)
Expanding and comparing coefficients, we get:
\( 3A + B = 2 \)
\( A - 3B = -1 \)
Solving these two equations:
\( A = \frac{1}{2}, \quad B = \frac{1}{2} \)
Hence,
\( \int \frac{2 \cos x - \sin x}{3 \cos x + \sin x} \, dx = \frac{x}{2} + \frac{1}{2} \ln |3 \cos x + \sin x| + C \)
Simplifying further:
\( = \frac{1}{2} \left( x + \ln |3 \cos x + \sin x| \right) + C \)
This can be generalized as:
\( \frac{1}{2} \left( \alpha x + \ln |\beta \sin x + \gamma \cos x| \right) + C \)
where \( \alpha = 1, \, \beta = 1, \, \gamma = 3 \).
Therefore,
\( \alpha + \frac{\gamma}{\beta} = 1 + \frac{3}{1} = 4 \)
\[ \int \frac{2 - \tan x}{3 + \tan x} \, dx = \int \frac{2 \cos x - \sin x}{3 \cos x + \sin x} \, dx \]
Let:
\[ 2 \cos x - \sin x = A(3 \cos x + \sin x) + B(\cos x - 3 \sin x) \]
Equating coefficients:
\[ 3A + B = 2, \quad A - 3B = -1 \]
Solving these equations:
\[ A = \frac{1}{2}, \quad B = \frac{1}{2} \]
Thus:
\[ \int \frac{2 \cos x - \sin x}{3 \cos x + \sin x} \, dx = \frac{x}{2} + \frac{1}{2} \ln |3 \cos x + \sin x| + C \]
Simplify:
\[ = \frac{1}{2} \left( x + \ln |3 \cos x + \sin x| \right) + C \]
Rewriting in the given form:
\[ = \frac{1}{2} \left( \alpha x + \ln |\beta \sin x + \gamma \cos x| \right) + C \]
From the equation:
\[ \alpha = 1, \quad \beta = 1, \quad \gamma = 3 \]
Finally:
\[ \alpha + \frac{\gamma}{\beta} = 1 + \frac{3}{1} = 4 \]
Ans: Option (3): 4.
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.