We start with the given integral:
\( \int \frac{2 - \tan x}{3 + \tan x} \, dx = \int \frac{2 \cos x - \sin x}{3 \cos x + \sin x} \, dx \)
Now, express the numerator as a linear combination of the derivatives of the denominator terms:
\( 2 \cos x - \sin x = A(3 \cos x + \sin x) + B(\cos x - 3 \sin x) \)
Expanding and comparing coefficients, we get:
\( 3A + B = 2 \)
\( A - 3B = -1 \)
Solving these two equations:
\( A = \frac{1}{2}, \quad B = \frac{1}{2} \)
Hence,
\( \int \frac{2 \cos x - \sin x}{3 \cos x + \sin x} \, dx = \frac{x}{2} + \frac{1}{2} \ln |3 \cos x + \sin x| + C \)
Simplifying further:
\( = \frac{1}{2} \left( x + \ln |3 \cos x + \sin x| \right) + C \)
This can be generalized as:
\( \frac{1}{2} \left( \alpha x + \ln |\beta \sin x + \gamma \cos x| \right) + C \)
where \( \alpha = 1, \, \beta = 1, \, \gamma = 3 \).
Therefore,
\( \alpha + \frac{\gamma}{\beta} = 1 + \frac{3}{1} = 4 \)
\[ \int \frac{2 - \tan x}{3 + \tan x} \, dx = \int \frac{2 \cos x - \sin x}{3 \cos x + \sin x} \, dx \]
Let:
\[ 2 \cos x - \sin x = A(3 \cos x + \sin x) + B(\cos x - 3 \sin x) \]
Equating coefficients:
\[ 3A + B = 2, \quad A - 3B = -1 \]
Solving these equations:
\[ A = \frac{1}{2}, \quad B = \frac{1}{2} \]
Thus:
\[ \int \frac{2 \cos x - \sin x}{3 \cos x + \sin x} \, dx = \frac{x}{2} + \frac{1}{2} \ln |3 \cos x + \sin x| + C \]
Simplify:
\[ = \frac{1}{2} \left( x + \ln |3 \cos x + \sin x| \right) + C \]
Rewriting in the given form:
\[ = \frac{1}{2} \left( \alpha x + \ln |\beta \sin x + \gamma \cos x| \right) + C \]
From the equation:
\[ \alpha = 1, \quad \beta = 1, \quad \gamma = 3 \]
Finally:
\[ \alpha + \frac{\gamma}{\beta} = 1 + \frac{3}{1} = 4 \]
Ans: Option (3): 4.
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
