We start with the given integral:
\( \int \frac{2 - \tan x}{3 + \tan x} \, dx = \int \frac{2 \cos x - \sin x}{3 \cos x + \sin x} \, dx \)
Now, express the numerator as a linear combination of the derivatives of the denominator terms:
\( 2 \cos x - \sin x = A(3 \cos x + \sin x) + B(\cos x - 3 \sin x) \)
Expanding and comparing coefficients, we get:
\( 3A + B = 2 \)
\( A - 3B = -1 \)
Solving these two equations:
\( A = \frac{1}{2}, \quad B = \frac{1}{2} \)
Hence,
\( \int \frac{2 \cos x - \sin x}{3 \cos x + \sin x} \, dx = \frac{x}{2} + \frac{1}{2} \ln |3 \cos x + \sin x| + C \)
Simplifying further:
\( = \frac{1}{2} \left( x + \ln |3 \cos x + \sin x| \right) + C \)
This can be generalized as:
\( \frac{1}{2} \left( \alpha x + \ln |\beta \sin x + \gamma \cos x| \right) + C \)
where \( \alpha = 1, \, \beta = 1, \, \gamma = 3 \).
Therefore,
\( \alpha + \frac{\gamma}{\beta} = 1 + \frac{3}{1} = 4 \)
\[ \int \frac{2 - \tan x}{3 + \tan x} \, dx = \int \frac{2 \cos x - \sin x}{3 \cos x + \sin x} \, dx \]
Let:
\[ 2 \cos x - \sin x = A(3 \cos x + \sin x) + B(\cos x - 3 \sin x) \]
Equating coefficients:
\[ 3A + B = 2, \quad A - 3B = -1 \]
Solving these equations:
\[ A = \frac{1}{2}, \quad B = \frac{1}{2} \]
Thus:
\[ \int \frac{2 \cos x - \sin x}{3 \cos x + \sin x} \, dx = \frac{x}{2} + \frac{1}{2} \ln |3 \cos x + \sin x| + C \]
Simplify:
\[ = \frac{1}{2} \left( x + \ln |3 \cos x + \sin x| \right) + C \]
Rewriting in the given form:
\[ = \frac{1}{2} \left( \alpha x + \ln |\beta \sin x + \gamma \cos x| \right) + C \]
From the equation:
\[ \alpha = 1, \quad \beta = 1, \quad \gamma = 3 \]
Finally:
\[ \alpha + \frac{\gamma}{\beta} = 1 + \frac{3}{1} = 4 \]
Ans: Option (3): 4.

Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
